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Abstract
Diagnosing the source of errors in snow models requires intensive observations, a flexible model

framework to test competing hypotheses, and a methodology to systematically test the domi-

nant snow processes. We present a novel process‐based approach to diagnose model errors

through an example that focuses on snow accumulation processes (precipitation partitioning,

new snow density, and snow compaction). Twelve years of meteorological and snow board mea-

surements were used to identify the main source of model error on each snow accumulation day.

Results show that modeled values of new snow density were outside observational uncertainties

in 52% of days available for evaluation, while precipitation partitioning and compaction were in

error 45% and 16% of the time, respectively. Precipitation partitioning errors mattered more

for total winter accumulation during the anomalously warm winter of 2014–2015, when a higher

fraction of precipitation fell within the temperature range where partition methods had the

largest error. These results demonstrate how isolating individual model processes can identify

the primary source(s) of model error, which helps prioritize future research.
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Key Points

• Process‐based diagnostics identified the density of new

snow and precipitation partitioning as the most

common sources of model error during accumulation

days

• Ubiquitous precipitation partitioning errors during

average winters were exposed during the anomalously

warm winter of 2015

• Choices of parameter values were more important than

competing functions for snow accumulation processes
1 | INTRODUCTION

Physically based models of the hydrological cycle are critical for testing

our understanding of the natural world and enabling forecasting of
wileyonlinelibrary.com/jo
extreme events. Previous intercomparison studies of existing snow

models (i.e., SNOWMIP I and II, PILPS) have been hampered by multi-

ple inter‐model differences, making it difficult to attribute model‐

observation discrepancies to individual modeling decisions (Essery

et al., 2009). Recent efforts to integrate multiple model hypotheses

into a single framework (Clark, Kavetski, & Fenicia, 2011, 2015c;

Essery, Morin, Lejeune, & Ménard, 2013; Essery, 2015) have provided

the tools to enable for a more rigorous validation of process represen-

tation in models. However, there exist few snow observatories that

measure sufficient physical states and fluxes to fully constrain the pos-

sible combinations within these multiple model frameworks (Essery

et al., 2013; Landry, Buck, Raleigh, & Clark, 2014). In practice, observa-

tions of bulk snow states, such as snow water equivalent (SWE) or

snow depth, are most commonly available. Calibrating a snow model

using a single bulk variable can lead to compensatory errors (Essery

& Etchevers, 2004), which may hide model deficiencies that matter

during extreme/unusual storms.

We present a novel process‐based calibration method that takes

advantage of multiple observations (including snow board measure-

ments) at the Snoqualmie Pass (SNQ) snow study site, located in the
Copyright © 2016 John Wiley & Sons, Ltd.urnal/hyp 349
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maritime climate of the Washington Cascades, United States (Wayand,

Massmann, Butler, Keenan, & Lundquist, 2015b). As an example of this

method, we focus on snow accumulation (or lack thereof) because of

its importance for regional seasonal water storage and supply (Elsner

et al., 2010; Vano, 2015), its projected sensitivity to expected warming

given the site's location in the rain‐snow transition zone (Elsner et al.,

2010; Klos, Link, & Abatzoglou, 2014), and the importance of precipi-

tation phase in controlling runoff generation during flooding (Wayand,

Lundquist, & Clark, 2015a; White et al., 2010) and attendant impacts

on transportation delays through the Snoqualmie corridor (Barbara

et al., 2008).

In this study, we compare simulations of snow pack were

performed using the Structure For Unifying Multiple Modeling Alter-

natives (SUMMA, Clark et al., 2015b, 2015c, 2015c) with historical

snow board measurements of daily accumulated SWE and snow depth.

These data are used as proxies for daily precipitation partitioning and

new snow density, in order to answer the following questions:

1. Which matters more, the functional form of a process (e.g., the

choice of equation) or the parameters for that function?

2. What are the most common sources of errors in modeled snow

depth accumulation at a maritime rain‐snow transitional site?
2 | BACKGROUND

2.1 | Sources of snow model uncertainty

Multiple sources of error affect land surface model predictions of

observed states and fluxes. For snow models run uncoupled to an

atmosphere, those sources include: upper boundary conditions (mete-

orological forcing) (Newman et al., 2015; Raleigh, Lundquist, & Clark,

2014; Rössler et al., 2014), model structure (process representations
and parameter values) (Clark et al., 2015c; Essery et al., 2013; Gupta,

Clark, Vrugt J, Abramowitz, & M., 2012; Pomeroy et al. 2007), and

numerical solver errors (Clark & Kavetski, 2010; Kavetski & Clark,

2011). In order to isolate specific areas of model structure that are

inadequate, which is the goal of this study, errors within the upper

boundary condition must be minimized to prevent them from biasing

model evaluations. Numerical errors are not addressed here, but left

for future study.
2.2 | Process observations

Unique observations are required to evaluate and improve existing

snow models. While bulk snowpack states (e.g., SWE) are most rele-

vant for streamflow predictions (Wood et al., 2015), internal snowpack

states (i.e., layered density, liquid water content, temperature, grain

size) are critical to evaluate individual process representation (Wever

et al., 2015) and are required for some remote sensing applications

(e.g., Langlois et al., 2012). Recent advances in internal snowpack

observations (Kinar & Pomeroy, 2015; Schmid et al., 2014) now pro-

vide information on individual snow processes. Likewise, historical

data sets, such as snow board measurements, provide a widely

observed but generally under‐utilized source of information on individ-

ual processes. To improve seasonal snow simulations, we need to

improve our methods of evaluating model structure to take advantage

of multiple internal snow pack observations. In this study, we present a

novel methodology to evaluate individual processes that impact snow

depth accumulation: partitioning of precipitation into ice or liquid, den-

sity of newly fallen snow, and the compaction of existing snow.
2.3 | Isolated processes

Model process representations tested in this study are illustrated in

Figure 1 and described below. For an in‐depth review of existing model

parameterizations, see Essery et al. (2013) and Clark et al. (2015c).
FIGURE 1 Example of isolating new snow
accumulation processes. All fluxes into dashed
boxes were taken directly from observations
when possible. Variable abbreviations are
defined in Table 2
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2.3.1 | Precipitation phase at the surface

The phase of precipitation reaching the surface depends on the atmo-

spheric conditions within the formation cloud as well the air mass it

travels through during fallout to the ground (Lundquist et al., 2008).

The most reliable way of sampling the instantaneous particle type at

the surface is still by human observation, followed by laser

disdrometers, both of which are rare in mountainous terrain. On a daily

time scale, precipitation type can be estimated from the ratio of accu-

mulated SWE on snow boards compared to total precipitation

(Wayand et al., 2015b). Measuring precipitation in the form of snow

is difficult and is the subject of intensive field campaigns (Nitu et al.,

2012; Rasmussen et al., 2012; Yang & Goodison, 1998). In contrast,

observations of total precipitation (i.e., a tipping or weighing bucket)

are more common and usually less biased if properly sited, heated,

and shielded (Sevruk, 1983). Thus, the partitioning phase determina-

tion is most often left to the hydrological model (Harder & Pomeroy,

2013) or the atmospheric model's microphysical scheme.

The most common method of predicting precipitation phase uses

ground measurements of air temperature (Ta) (USACE, 1956; Auer,

1974), dew point temperature (Td) (Marks, Winstral, Reba, Pomeroy,

& Kumar, 2013), or wet bulb temperature (Twet) (Harder & Pomeroy,

2013; Marks et al., 2013), and sometimes upper‐air observations (Sims

& Liu, 2015; Wayand, Clark, & Lundquist, 2016c), which are applied at

subdaily or daily time scales. See Feiccabrino, Graff, Lundberg,

Sandström, and Gustafsson (2015) for an in‐depth review of existing

methods. For this study, we use the wet‐bulb temperature form based

on the theory that it best represents the temperature of a falling

hydrometer (Marks et al., 2013). Twet was calculated iteratively using

the psychrometric equation (Campbell & Norman, 1998) with satu-

rated vapor pressure from (Buck, 1981), using in situ observations of

Ta, relative humidity, and surface pressure.
2.3.2 | Density of newly fallen snow

The density of newly fallen snow is commonly measured on a surface

over a period of 1 hr to 24 hr (Pfister & Schneebeli, 1999; USACE,

1956). Most often, the newly fallen snow is measured manually on a

snow board, which is cleared periodically. The longer the period, the
FIGURE 2 (a) Images show available measurements of new snow water eq
lines show modeled snow layers (accumulation, compaction, and merging) t
(b) Example of the “modeled snowboard” simulations, which were compared
the end of modeled hourly time step; thus, first step is non‐zero
greater chance that other processes (i.e., wind redistribution, melting,

settlement, etc.) may impact the measurement of newly fallen density,

which complicates the evaluation of snow density parameterizations

that are applied within a model at a range of time scales.

Methods used to predict newly fallen snow density (Anderson,

1976; Boone, 2002 Hedstrom & Pomeroy, 1998; Oleson, Lawrence,

& Gordon, 2010) have been fitted to observational data measured as

described above over a range of snow climates (maritime, continental,

alpine). However, they all are based on surface air temperature

(Anderson, 1976; Hedstrom & Pomeroy, 1998) and wind speed

(Pahaut, 1976). The ability of these surface variables to characterize

the variability of newly fallen snow density is known to be low

(Roebber, Bruening, Schultz, & Cortinas, 2003). In operation, a

common rule of thumb of ~100 kg m−3 is often simply used, which

attempts to capture the mean density.
2.3.3 | Compaction of accumulated snow

Compaction, or densification, of bulk snow is commonly measured by

comparing the change in density measured from both bulk SWE and

depth observations. The compaction of individual layers has also been

measured using settling disks placed post‐storm (Morin et al., 2012;

USACE, 1956). Compaction of the underlying snowpack (referred to

here as “old” snow) during snow accumulation can be measured from

the difference between newly accumulated snow depth (i.e., snow

board) and the bulk snow depth change (USACE, 1956), assuming no

loss of mass through melt. We used this latter method as illustrated in

Figure 2a.

Parameterizations of model compaction vary from a simple constant

rate to empirical functions that depend on snow viscosity, overburden

pressure, metamorphism, and liquid water. We use the commonly

applied (Anderson, 1976) function, but only focus on parameters

impacting compaction because of overburden (Table 1) as we show that

this is the dominant process during snow accumulation events.
2.3.4 | Summary

The above three processes are examined at the Snoqualmie Pass snow

study site described in section 3. The snowmodel framework used here
uivalent (SWE), new snow depth, and bulk snow depth. Horizontal black
hat are representative of observed layers shown in right image.
to observations in (a). Note: the red line shows modeled snow depth at
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and the process‐based calibration method are described in section 4.

Selected model parameters and diagnosis of the sources of model

errors are reported in section 5. The uncertainty and implications of

error diagnosis and future uses of the methodology described here

are then discussed in section 6, followed by a summary of the main

conclusions in section 7. All abbreviations are defined in Table 2.
3 | STUDY SITE AND DATA

The Snoqualmie Snow study site is located within the upper rain‐snow

transition zone (921 m), receiving ~50% of October through June pre-

cipitation as snow. Despite mild temperatures, annual peak snow

depths reach 2.6 m on average, accumulated by 12 storms per winter

on average. The site is ideal for diagnosing modeled new snow accumu-

lation errors because of its continuous record of snow board observa-

tions and meteorological forcing data. Site pictures, time‐lapse

movies, and a complete description of available data are provided by

Wayand et al. (2015b), at http://dx.doi.org/10.6069/H57P8W91.

Despite numerous snow observations, no bulk SWE measurements

(e.g., a snow pillow) were available or used in this study. Below, we

detail all data used to drive and evaluatemodel simulations in this study.
3.1 | Snow observations

Throughout winter months (typically November to May) since 1974,

Washington Department of Transportation avalanche crew took daily

snow measurements at approximately 6:00 am PST on a 0.22 m2

(45 cm × 48 cm) snow board (Figure 2a), which was then cleared and

replaced for the next day. Accumulated snow depth was measured

from a graduated snow board stake. SWE was separately measured

with a snow cutter (289.51 cm2 area) and weighed with a scale. We

refer to the 24‐hr accumulations as new snow depth and new SWE.

Bulk snow depth was manually read from a second 4 m snow stake

each 6:00 am PST. Observational uncertainties were estimated as

±25 mm for bulk snow stake readings of snow depth, ±10 mm for

new snow depth, and ±1.3 mm for new SWE measurements (calcu-

lated from the new snow depth error of ±10 mm and the average

observed new snow density of 130 kg m−3). Additional uncertainty
TABLE 2 Definitions of abbreviations used

KGE Kling‐Gupta Efficiency

SWE Snow water equivalent

New Snow The new snow accumulated on a snow board within 24 hr

Old Snow The existing snowpack underlying the accumulated
“New” snow

Bulk Snow The total snow depth from the ground to the snow
surface (New and Old)

P Precipitation

RH Relative humidity

Twet Wet‐bulb temperature

Tair Near surface air temperature

U Near surface wind speed

fice Fraction of precipitation ice

frain Fraction of precipitation liquid

http://dx.doi.org/10.6069/H57P8W91
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from horizontal transport of snow onto or off of the snow board was

assumed negligible given the low mean wind speeds of 0.6 m s−1 at

the SNQ site, which is surrounded by forest (see Figure 2 in Wayand

et al., 2015b). Finally, we note that no automatic measurements of bulk

SWE were available (e.g., a snow pillow), as is common at the majority

of snow study sites worldwide.

The above daily snow observations were used as proxies for daily

partitioning, new snow density, and compaction of existing snow. The

daily fraction of snowfall to total precipitation was calculated as the

ratio of accumulated SWE on the snow board to the total precipitation

measured by the heated and shielded tipping bucket. The density of

the 24‐hr accumulation of new snow was calculated directly as the

ratio of measured SWE to measured snow depth on the snow board.

Compaction of the existing snow pack (underlying the daily new snow

accumulation) was estimated as the difference between the 24‐hr

change in bulk snow depth and the measured new snow depth accu-

mulated on the snow board. This difference is illustrated in Figure 2a

as the green vertical bar. Note that we were not able to isolate the com-

paction of new snow, which is further discussed in section 6.2. All

three daily proxies are used to evaluate process representation.
3.2 | Meteorological forcing data

The meteorological data set used to drive snow model simulations

was taken directly from Wayand et al. (2015b), except as follows.
FIGURE 3 Methodology for both (a) Typical
and (b) Process‐based methods. The typical
method uses a lumped calibration approach by
running all model option/parameter configu-
rations. In contrast, the process‐based method
evaluates one process at a time, passing on the
selected option/parameters to the next pro-
cess evaluation. Selected model option/
parameters are defined in Table 1
We restrict our study period to water years (Oct. – Sept.) 2004

through 2015, when all forcing variables critical for simulating snow

accumulation (air temperature, relative humidity, wind speed, and

precipitation) were measured in situ (see Figure 3 in Wayand et al.,

2015b). Air pressure and incoming irradiance measurements were

available only after 2008 and 2012, respectively. Missing forcing data

were primarily filled from the National Land Data Assimilation Sys-

tems (NLDAS) data (Cosgrove, 2003), bias‐corrected to available in

situ observations at SNQ as described in Wayand et al. (2015b). Pre-

cipitation gauge undercatch of snowfall was corrected using snow

board SWE observations. Finally, half‐hourly data for water years

2013 through 2015 were aggregated to hourly time steps to create

a consistent meteorological forcing data set over water years

2004–2015.
4 | METHODS

We present a novel method for diagnosing sources of errors in

modeled snow accumulation, which we refer to as the process‐based

method. This approach is contrasted with a more common method of

calibrating a snow model using only observations of bulk snow depth.

All simulations were performed using the Structure for Unifying Multi-

ple Modeling Alternatives (SUMMA) model, with modifications as

described below.
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4.1 | Snow model (SUMMA)

SUMMA is a physically based hydrological model that simulates the

energy balance and transport of water through the canopy, snowpack,

soil, and ground water (Clark et al., 2015a, 2015c, 2015b). For each

physical process, the model includes multiple hypotheses of process

representations that are currently used in existing snow and land sur-

face models. Required meteorological forcing data consist of: air tem-

perature, precipitation rate, wind speed, specific humidity, air

pressure, and incoming short‐ and long‐wave irradiance. Complete

model configurations are provided in Table S1, and equations for each

process are provided in Appendix S1.

4.2 | Simulating snow board measurements with
SUMMA

SUMMA simulations were modified in order to allow a direct compar-

ison to the snow board observations of 24‐hr accumulated SWE and

snow depth (Figure 2a). This was a critical step for a fair model evalu-

ation. Because the snow board measurements were made daily at

6:00 am PST, and then the board was cleared of all snow, SUMMA sim-

ulations were restarted every 6:00 am PST with the previous accumu-

lated snowpack removed (Figure 2b). Each daily restart simulation used

initial soil conditions from a continuous SUMMA simulation with

default parameter settings with two significant modifications: (a) the

soil albedo was set at 0.8 to match the albedo of a snow board, and

(b) the upper soil layer temperatures were set to the upper snow layer

temperatures (if present in the continuous simulation) to match the

surface temperature of the actual snow board prior to snow fall. A sen-

sitivity analysis found that the choice of plausible snow board albedo

(0.6–0.9) or reasonable initial temperature values did not impact simu-

lated daily SWE or snow depth accumulation significantly.

4.3 | Lumped calibration method

A lumped calibration method (Figure 3a) was used to set an upper

bound of SUMMA performance based on previous work that has

shown that allowing free‐ranging parameters will always identify the

optimal fit to any designated criteria (Gong, Shen, Hong, Liu, & Liao,

2011; Nearing & Gupta, 2014). A 5342 member ensemble of contin-

uous SUMMA simulations was created by varying function and

parameter combinations for partitioning, new snow density, and

compaction simultaneously, as described in section 4.2. Parameter

values were selected through uniform random sampling through

feasible parameter space as defined in Table 1 and illustrated in

Figures S1–S6.

We only used the bulk daily accumulation of snow depth for cali-

bration to be representative of a typical observational snow site (i.e.,

without manual snow board or bulk SWE measurements). Simulated

daily accumulation of bulk snow depth for each ensemble member

was evaluated during the 2004 to 2009 water years using the modified

Kling‐Gupta efficiency (KGE) (Gupta, Kling, Yilmaz, & Martinez, 2009;

Kling, Fuchs, & Paulin, 2012),

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2 þ α−1ð Þ2 þ β−1ð Þ2

q
(1)
where r is the correlation coefficient, α is the ratio of the modeled

to observed coefficient of variations, and β is the ratio of model mean

to observed mean. This metric was chosen because it can be separated

into a correlation term, a variance term, and a bias term (Magnusson &

Wever, 2015). We note that the variance term did not significantly

impact results here, but keep the formula to remain consistent with

previous snow model evaluation studies. A perfect simulation has a

KGE value of one.
4.4 | Process‐based calibration

A process‐based method to calibrate snow model options/parameters

(referred to as “model configuration” from here on) relating to snow

accumulation was designed to minimize the propagation of forcing

and model errors that impact calibration (Figure 3b). We evaluated

one process at a time and attempted to remove cascading errors into

the next process evaluated (e.g., information pathways in Figure 1).

First, we minimized meteorological forcing errors by selecting the

2004 to 2015 water years where the majority (98%) of forcing data

that impact new snow accumulation (air temperature, precipitation,

wind speed, and relative humidity) were taken from in situ observa-

tions. Next, an ensemble of simulations (Table 1) was run for modeled

processes impacting snow accumulation examined in this study

(partitioning, new snow density, and compaction). Process parameter-

izations were selected from a range of the most commonly used func-

tions in snow hydrology models (Clark et al., 2015c; Essery et al.,

2013). Parameter ranges for each function were determined by choos-

ing values that resulted in physically possible estimated states or

fluxes, as illustrated in Figures S1–S6. Each ensemble of simulations,

referred to as a process experiment, was run in a step‐wise approach

as illustrated in Figure 3b and described below.

For the partitioning experiment, we evaluated all days when both

precipitation occurred and observations of daily accumulated SWE

were available (N = 564). Figure 4a shows all model simulations com-

pared to snow board observed SWE for an example period where

the sensitivity of the linear partitioning method varied depending on

the wet‐bulb temperature (Twet). The ensemble member with the

highest KGE value was selected, and its parameter values were applied

to the snow density experiment, as illustrated in Figure 3b.

For the snow density experiment, only days when the simulated

SWE error was less than observational uncertainty (± 1.3 mm) were

evaluated to prevent large partitioning errors from propagating into

new snow density evaluations. Again, the ensemble member with the

highest KGE value was selected, and its option/parameter values were

applied to the compaction. Figure 4b illustrates modeled new snow

depth sensitivity to density model configuration. This direct compari-

son is only possible because we modified SUMMA to match observa-

tions. For instance, if we had instead only used the difference in the

bulk snow depth between days, compaction of the underlying snow-

pack would have biased our measure of new snow density. The impact

of snow density changes between the time of snowfall and the time of

the snow board measurement are discussed in section 6.2.

The modeled compaction of the existing snow pack (“old snow”)

was only evaluated on days with new snow accumulation and not in

between snow fall events. On days with snowfall, we assumed that



FIGURE 4 Example of model ensemble of (a) accumulated SWE, and
(b) accumulated snow depth, compared to independent snow board
measurements of 24‐hr accumulated SWE and snow depth. Observed
wet‐bulb (Twet) and air (Tair) temperatures are also shown because
modeled partition depended on Twet and new snow density on Tair
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overburden was the dominant factor contributing to compaction of the

old snow (discussed in section 6.2). Therefore, it follows that compac-

tion errors will be largest for days when the accumulation of SWE for

that day was biased. Thus, we only evaluate model compaction values

during days when the simulated partitioning (modeled new SWE)

values were within observational uncertainty.

Ignoring melt, the time evolution of snow depth can be given as

dhs
dt

¼ hnews −hcompact
s (2)

where hs(m) is the bulk snow depth, hnews (m s−1) is the rate of new

snowfall, and hcompact
s (m s−1) is the rate of snow compaction for old

snow (Table 2). The snow compaction and the snowfall rate are esti-

mated as

hcompact
s ¼ hnews −

hs tþ Δtð Þ−hs tð Þ
Δt

� �
cont

(3)

hnews ¼ hs tþ Δtð Þ−hs tð Þ
Δt

� �
sb

(4)

where Δt (s) is the time interval for successive snow depth mea-

surements (Δt is 24 hr in this study). For modeled compaction, the

change in total snow depth is from the continuous simulation (cont)

while the change in new snow depth is from the snow board simulation

(sb). Finally, the two parameters that control compaction because of

over burden, G and H as implemented in the Anderson (1976) function

(see Equations 8 and 9 in Appendix S1), were varied in an ensemble of

81 simulations. Alternative compaction functions (e.g., Verseghy

(1991)) were not included in this study.
4.5 | Diagnosing daily snow accumulation errors

From the process‐based methods above, we kept track of the most

likely source of model error during each day using the best‐fit param-

eters provided in Table 1. Given the direction of error propagation

from partitioning, to new snow density, into compaction (Figure 1),

we were only able to isolate the error source for the subset of days

when all preceding errors were within observational uncertainty (see

Figure 1). For example, of the 564 snow accumulation days between

2004 and 2009, the simulated daily partition was within the observa-

tional uncertainty on 333 days. Thus, the modeled newly fallen snow

density skill could only be assessed for these 333 days, with the

remaining 231 assumed to be in error because of partitioning. Uncer-

tainties in this error diagnostic approach are discussed in section 6.2.
4.6 | Case study of water year 2015

As an example of the application of the process‐based error diagnostic

method, we focused on water year 2015 because its winter average

temperature anomaly (+2.1°C) was equal to projected winter tempera-

ture increases in the 2040s (Elsner et al., 2010; Klos et al., 2014;

Mauger et al., 2015; Vano, 2015). During historically low snow years

(e.g., California 2006–2015 drought, Kogan and Guo (2015)), the water

content of snow has become more valuable per unit volume; thus,

errors in model predictions of snow accumulation will have a larger

impact on water resources. Characterizing errors in modeled new snow

accumulation will help focus efforts to improve model robustness in

the current and future rain‐snow transitional climates.
5 | RESULTS

5.1 | Lumped method results

From the ensemble of 5342 model configurations, the “best” simula-

tion of bulk snow depth accumulation was selected for water years

2004 to 2009 using the highest KGE metric (Equation 1). Selected

parameter values are provided in Table 1. Because SUMMA was pur-

posefully calibrated to the accumulation of bulk snow depth, the best

model run had a small bias of 1% of observations and a KGE value of

0.78. The model skill from the calibration represented an upper bound

for this site and these water years given the abilities of the new snow

accumulation functions included here (Gong et al., 2011; Nearing &

Gupta, 2014). Hidden model errors in bulk snow accumulation that

had a compensatory impact throughout the study period were diag-

nosed using the process‐based approach as reported below.
5.2 | Process‐based method results

5.2.1 | Precipitation partitioning experiment

Simulated daily SWE accumulation (new SWE) was sensitive to the

range of parameters because the SNQ winter wet‐bulb temperature

(Twet) was frequently near 0°C during snowfall events. Modeled new

SWE sensitivity is illustrated in Figure 5a, where all model configura-

tions (grey circles) are compared to observations of new SWE for the

calibration period. The parameter options with the lowest model error



FIGURE 5 Modeled and observed daily accumulated new SWE (a), new snow depth (b,c), and compaction (d,e), shown for each day. Gray circles
show all ensemble simulations. Blue and red filled circles show ensemble member selected from the highest Kling‐Gupta efficiency (KGE) value
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(blue dots in Figure 5a) had a Twet critical value (Pc) of −0.24°C with a

mixed‐phase range (Pr) of 1.625°C (Table 1). Out of the 564 days with

observed or modeled snowfall during the calibration period (water

years 2004–2009), the model was within the uncertainty of the snow

board SWE measurements (±1.3 mm) 333 days (59%), which was 64%

of total accumulated SWE (Table 3). The remaining 231 (41%) days

highlighted the difficulty of predicting precipitation phase at this mar-

itime site using near‐surface Twet.

The selected partitioning function and the observed fraction of

daily precipitation measured as ice are shown in Figure 6a. The daily

fraction as ice was estimated from the ratio of daily accumulated
SWE on the snow board to the daily accumulated precipitation (rain

and snow). We note that retention of rainfall within recently accumu-

lated snow is included in our estimated daily fraction as ice, which

may positively bias daily fractions up to themaximum liquid water hold-

ing capacity of snowpack (~10% of bulk SWE) (Boone & Etchevers,

2001; Essery et al., 2013). Total precipitation amount is indicated by

the relative circle size. Because wet‐bulb temperature is most impor-

tant here in its use for distinguishing precipitation phase, wet‐bulb tem-

perature in each hour was weighted by the fraction of daily total

precipitation falling within that hour. Therefore, wet‐bulb temperatures

during the periods of heaviest precipitation are weighted the most.



TABLE 3 Number of days attributed to each source of modeleda error

Variable evaluated
(process represented)

#
days
snow
fall

# days unknown
because of upstream

error or missing
observations
requiredb

# available
days to
evaluate
process

# days model error
within observed

uncertainties (# days
available) [% of
available days]

# days model error
outside observed

uncertainties (# days
available) [% of
available days]

Calibration period
(2004–2009)

New SWE (precipitation
partitioning)

564 0 564 333 (564) [59%] 231 (564) [41%]

New depth (snow density) 564 231 333 51 (333) [45%] 182 (333) [55%]

Old compaction (overburden
compaction)

564 231 333 266 (333) [80%] 67 (333) [20%]

No error 144 (25%)

Evaluation period
(2010–2015)

New SWE (precipitation
partitioning)

552 0 552 304 (552) [55%] 248 (552) [45%]

New depth (snow density) 552 248 304 147 (304) [48%] 157 (304) [52%]

Old compaction (overburden
compaction)

552 248 304 256 (304) [84%] 48 (304) [16%]

No Error 138 (25%)

aStatistics shown for the process‐based SUMMA configuration without cascading errors.
bFor example, modeled snow density values were not evaluated for days where a precipitation partitioning error was observed.

FIGURE 6 Daily fraction of precipitation (a)
observed and (b) modeled as ice. Observed
fraction was calculated from the ratio of snow
board SWE to total gauge precipitation
(corrected for undercatch). Modeled fraction
was calculated from the ratio of simulated new
SWE (restart simulations) to the observed
total gauge precipitation. Total precipitation
amount is indicated by the relative circle size.
Because wet‐bulb temperature is most
important here in its use for distinguishing
precipitation phase, wet‐bulb temperature in
each hour was weighted by the fraction of
daily total precipitation falling within that
hour. Therefore, wet‐bulb temperatures dur-
ing the periods of heaviest precipitation are
weighted the most
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FIGURE 7 (a) Calibration results for each new snow density function,
showing near‐equal performance given the right parameter values. A
KGE value of unity is best. (b) Observed newly fallen snow density
compared to the daily average air temperature during water years
1980–2015. Overlaid lines show each function in (a) with the highest
KGE value (red circles). Blue squares in (a) show KGE values with
default parameter values taken from literature (Table 1)
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The selected partitioning function does not appear to match the

daily observations well. However, this discrepancy is partly explained

by the difference in time steps between the observations (daily) and

model (hourly). The daily fraction of ice derived from the modeled

snow board SWE using the above partitioning function is shown in

Figure 6b, which more closely matches the daily observations. Using

this more direct comparison (daily fraction to daily fraction), we found

the largest model errors in accumulated SWE occurred near a Twet of

0°C (Figure 6c) but were unbiased as a result of calibration (Figure 5a).

5.2.2 | New snow density experiment

The above‐identified errors in partitioning directly impacted simula-

tions of bulk snow depth and the calibration of best new snow density

function. Evaluation of the ensemble of new snow depth simulations

using all days (N = 564) and only days where partitioning errors were

within observed uncertainty (N = 333) are shown in Figure 5b, c,

respectively. The exclusion of partitioning errors reduced the largest

new snow depth errors (reduced scatter of grey dots in Figure 5c).

The ensemble member with the lowest error (highest KGE value) in

daily‐accumulated snow depth was different for the two sets of days.

Excluding partitioning error days resulted in the constant density

method with a value of 78 kg m−3 being chosen, while including all

days selected the Pahaut (1976) method (Table 1).

In general, the choice of parameter values was more important

than the choice of new snow density function, as illustrated by

Figure 7a. All new snow density functions could have a KGE value

greater than 0.8 (red dots) so long as the correct parameter values were

selected for this location. However, if the optimal parameter values

were unknown and selected at random, the Hedstrom and Pomeroy

(1998) and Pahaut (1976) functions would have a higher likelihood of

a higher KGE value. If default parameter values from literature (Table 1)

were used, the Hedstrom and Pomeroy (1998) function had the

highest KGE value (blue square). The resulting functions with optimal

parameter values compared to observations are shown in Figure 7b,

which further illustrates the similarity in moderate skill between all

competing hypotheses. The large variability of measured density for

a given average temperature was a combination of variations in falling

density, compaction, and melting, which are further discussed in

section 6.2.

5.2.3 | Compaction experiment

The modeled compaction of the existing snowpack exhibited large sen-

sitivity to the range of parameter values used here (Figure 5d, e).

Excluding days where the partitioning error was outside observational

uncertainty (Figure 5e) removed many of the largest errors in modeled

snow compaction. For the remaining subset of days where partitioning

was correct (333 days), modeled compaction was in error 67 days

(Table 3).
5.3 | Bulk snow depth

Simulations of bulk snow depth using the three model configurations

in Table 1 are compared to observations for the calibration period

(Figure 8a–d) and evaluation period (Figure 8e–h). All simulations pro-

duced generally high quality simulations of the total bulk snow depth
for most water years, despite having different model configurations

(Table 1). A notable result was that both process‐based configurations

had similar skill in simulating the bulk snow depth as the lumped con-

figuration, which represented the upper bound in this study. However,

intermodel simulation differences were found in simulated new SWE

(Figure 8b,f), new snow depth (Figure 8c,g), and old snow compaction

(Figure 8d,h), which had compensatory effects on bulk snow depth

accumulation.
5.4 | Diagnosis of bulk snow accumulation errors

For both the calibration and evaluation periods, errors because of

partitioning of precipitation resulted in the largest absolute number

of days compared to other processes (Figure 9). However, the pro-

cesses of new snow density and compaction were only evaluated for

days where partitioning errors were small (to prevent cascading errors).

Therefore, as a percentage of all available days, each process was eval-

uated (outlined boxes Figure 9), new snow density errors were most

common (55% calibration, 52% evaluation), followed by partitioning

errors (41% calibration, 45% evaluation), and compaction of old snow

errors during accumulation days (20% calibration, 16% evaluation)

(Table 3). Only 25% of days were identified as having none of the

above errors, which meant that during the majority of snow accumula-

tion days (75%) at least one process representation failed, most com-

monly new snow density and precipitation partitioning. However, the

individual daily errors identified canceled out over annual time scales



FIGURE 8 Modeled and observed bulk snow depth during the calibration period (a) (water years 2004–2009) and (e) evaluation period
(2010–2015). Vertical white periods represent missing snow stake measurements. Scatter plots of modeled and observed total accumulated new
SWE (b,f), new snow (c,g), and compaction of old snow during accumulation days (d,h) for each water year. Symbol type indicates each water year,
while color refers to model simulations defined in legend (a)
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during most years, resulting in high skill in simulating bulk snow depth

(Figure 8). The exception to this finding was water year 2015, which

had an anomalously warm winter (December through February) tem-

peratures 2°C higher than the 1980 to 2014 average.

Figure 10 illustrates the identified source of bulk snow depth

accumulation errors during water year 2015 for each day. While on

average, about 12 storms build the annual snowpack at Snoqualmie,

observations show that the 2015 seasonal snowpack was built with

only seven storms. The dominant source of new snow accumulation

error during the seven major storms of water year 2015 was incorrect

partitioning, based on the process‐based evaluation. Four available

manual full snowpit measurements of bulk SWE (Wayand et al.,

2015b) corroborate that the model accumulated too much mass, in
FIGURE 9 Frequency of each source of
model daily error (solid bars) out of available
days where cascading errors were removed
(outline bars), for each water year
contrast to a density error (not shown). Interestingly, water year

2015 had precipitation partitioning errors as often as other years

(Figure 9), but those errors mattered more toward bulk snow accumu-

lation because a larger fraction of winter precipitation occurred near

the freezing point, where partitioning parameterizations were most

uncertain (Figure 6c). This example illustrates the utility of the pro-

cess‐based method, which is not to select the best‐fit model, but that

when the best‐fit model fails, to identify the process(es) responsible for

that failure (e.g., precipitation partitioning in water year 2015). In

addition, the process‐based method identified the need for new

partitioning methods that will not fail during warm winters, which

may become more common in the future for theWashington Cascades

(Elsner et al., 2010; Klos et al., 2014; Mauger et al., 2015; Vano, 2015).



FIGURE 10 Time series of observed and
modeled total snow depth for water year
2015. Colors for each day show the identifi-
cation of the dominate source of model error
using the process‐based model configuration
(without cascading errors). White areas show
non‐accumulation periods that not included in
analysis
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6 | DISCUSSION

6.1 | Robustness of simulations of bulk snow
accumulation

The lumped method identified a model configuration that resulted in

very low error simulating bulk snow depth during both calibration

and evaluation periods (Figure 8). However, the process‐based

approach presented here revealed that on a daily time scale, one of

the three snow accumulation processes was in error 75% of the time,

indicating the models did not get the right answer (i.e., bulk snow

depth accumulation) for the right reasons (Kirchner, 2006). This level

of skill may be acceptable for some applications (i.e., predicting peak

basin‐averaged SWE for seasonal streamflow forecasts) but will not

be acceptable for others (i.e., microwave remote sensing, assessing cli-

mate change sensitivity, forecasting of rain‐on‐snow floods, or backing

out SWE from observed snow depth (Egli et al., 2009; Sturm et al.,

2010)).

Likewise, the most important source of model error (where to

focus model development) depends on the application. For example,

simulating the annual SWE accumulation requires a precipitation

partitioning method that will not fail during anomalous years (e.g.,

water year 2015 at SNQ). On an individual storm basis, we found that

the most frequent source of error in total snow depth was modeled

new snow density (52%) or precipitation partitioning (45%). Thus,

methods that derive SWE from observations of snow depth (e.g., air-

borne LIDAR) and modeled bulk snow density for a single storm would

be sensitive to the frequent errors in new snow density found here.

Fortunately, low snow density errors are compensated by higher com-

paction rates with time, and high snow density errors are compensated

by lower compaction rates with time; thus bulk density errors should

decrease with time following a snow event (not shown). Finally, the

process‐based method used here provides a way to quantity uncer-

tainty of individual modeled processes, which would be useful within

a data assimilation framework (Reichle, 2008).
6.2 | Uncertainty in diagnosis of daily model error
source

Processes of precipitation phase, density of newly fallen snow, and

compaction of existing snowpack were measured indirectly with avail-

able daily observations at the SNQ site (i.e., snow board measure-

ments). An assessment of the degree to which the daily time scale
impacted the diagnostic of sources of error was done to ascertain

the uncertainty of this study's results.

The measured snow board SWE is a function of the accumulated

snowfall and retained rainfall minus any drained snowmelt over the

prior 24 hr. Retention of rainfall in newly accumulated snow (i.e., dur-

ing the passage of warm fronts when snow changes to rain) should be

less than ~10% by mass (as previously discussed in section 5.2.1),

which suggests that our daily partitioning fractions calculated in this

study (Figure 6) could be biased high by 10% during these events.

Quantifying the additional error introduced by partial melting of the

accumulated snow board SWE is more difficult. Although snowmelt

lysimeter observations were available, they are (a) impacted by hydro-

logical processes taking place throughout the bulk snow back, and (b)

did not always provide accurate quantitative estimates of snowmelt

(Wayand et al., 2015b). The overall accuracy of the daily phase from

the snow board was assessed using 10‐s phase observations from a

laser disdrometer, which was only available for water year 2015

(Wayand, et al., 2016c). The daily precipitation fraction as ice derived

from the snow board was found to have a bias ratio of 0.65 and a cor-

relation to the disdrometer of 0.6 (Figure S7).

Besides the density of newly fallen snow, additional processes that

impacted the measured snow density after 24 hr include the compac-

tion of accumulated snow because of overburden and metamorphism.

Thus, some of the scatter in Figure 7 is likely because of a combination

of these processes and variability in the newly fallen snow density

(Wayand et al., 2015b). Very high snow density measurements may

also have been because of hail and graupel, which occur frequently

during the passage of vigorous frontal systems. Without sub‐daily

observations of newly fallen snow density, it is difficult to separate

out these impacts and quantify their effect on the calculated density

values shown in Figure 7.

Compaction of the underlying (“old”) snowpack was calculated

here based on measurements of the change in total bulk snow depth

(from a snow stake) and accumulation of new snow depth (from a

snow board). Although the compaction of new snow could not be iso-

lated given available observations, this did not impact our calculation

of old snow compaction because compacted new snow would equally

reduce snow depths measured via the snow board and the snow stake

(see Figure 2).

The assumed control of overburden on compaction rates was

supported by the fact that observed bulk compaction showed a high

correlation (R2 = 0.6) with the amount of accumulated new SWE. Fur-

ther, temperature‐driven metamorphism and resulting compaction
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were likely small given small internal snowpack temperature gradients

in a maritime climate during snow accumulation. However, the impact

of liquid water was likely significant, especially during frequent warm

frontal systems when snow switched to rain within a few hours. We

were unable to isolate this process given available observations.
6.3 | Applicability of process‐based method

The process‐based approach presented here used multiple snow

observations to constrain model choices, as has been previously advo-

cated (e.g., Essery et al., 2013; Magnusson & Wever, 2015). Our meth-

odology differed from previous approaches in that we focused on

removing errors (e.g., biased meteorological forcing, preceding pro-

cesses, etc.) from cascading into the evaluation given modeled pro-

cesses. Isolating process evaluation from preceding errors is critical

for understanding whether or not models get the right answer for

the right reasons (Kirchner, 2006).

The methodology used here to identify process representation

errors and limit propagation of model errors can be generalized to

other areas of snow hydrology. The requirements for such application

are observations of the boundary conditions (here meteorological forc-

ing data) and internal snow pack observations (here daily new snow

accumulation). A lack of the required observations is likely the greatest

limitation to applying this method to other processes and at other loca-

tions, which makes efforts to connect and share available mountainous

data sets (Pomeroy et al., 2015) critical for model development.
7 | SUMMARY

This study presented a novel process‐based approach to diagnose

model errors through an example that focused on snow accumulation

processes. For the Snoqualmie Pass study site, we found that errors

in new snow density and precipitating partitioning occurred during

52% and 45% of available snow accumulation days, respectively, while

compaction errors were less frequent (16%). Therefore, for applica-

tions where the change in total snow depth during a snow storm mat-

ters (e.g., estimating storm‐specific snowfall mass from LIDAR derived

snow depth), the model parameterizations of new snow density and

precipitation partitioning need to be improved. In addition, we found

that the choices of new snow density function and parameter values

were impacted by preceding precipitation partitioning errors,

suggesting caution must be used when evaluating future new snow

density parameterizations. Finally, the main benefit of the process‐

based method is not that it results in a better fit than traditional cali-

bration methods (Figure 8), but that when the model fails, we can iden-

tify the process responsible for that failure (i.e., partitioning in water

year 2015, Figure 10), which is critical for model development and

advancement.
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