{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab 1-3: Empirical Probability Distributions\n", "\n", "In the real world, we have a limited number of observations (not inifine numbers along a curve as in the theoretical examples). How do we know what our data looks like, what kind of distribution it has, what statistical tests we might what to use? \n", "\n", "One first step can be to create an empirical CDF and PDF from the data. (PDFs are often more intuitive, they resemble histograms, but which one you use to communicate some point depends on your audience and what what other engineers and scientists in your field typically use.) Wikipedia is a good place to start to learn more about [empirical distributions](https://en.wikipedia.org/wiki/Empirical_distribution_function).\n", "\n", "Let's import some packages we'll need, and load a sample dataset." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import scipy.stats as stats\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/lib/python3.10/site-packages/openpyxl/worksheet/_read_only.py:81: UserWarning: Unknown extension is not supported and will be removed\n", " for idx, row in parser.parse():\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date of peakwater yearpeak value (cfs)gage_ht (feet)
01928-10-0919291880010.55
11930-02-0519301580010.44
21931-01-2819313510014.08
\n", "
" ], "text/plain": [ " date of peak water year peak value (cfs) gage_ht (feet)\n", "0 1928-10-09 1929 18800 10.55\n", "1 1930-02-05 1930 15800 10.44\n", "2 1931-01-28 1931 35100 14.08" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Define the filepath and filename of the file with our data\n", "Skykomish_data_file = '../data/Skykomish_peak_flow_12134500_WY1929_2023.xlsx'\n", "# Use pandas.read_excel() function to open this file.\n", "Skykomish_data = pd.read_excel(Skykomish_data_file)\n", "# take a look at the first few rows\n", "Skykomish_data.head(3)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAE6CAYAAABgXSjpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoR0lEQVR4nO2dd3gUVdvG703bFMISCEkIoaOUNzRBgdB7C8XIiwJGsCAWQBTLh6JgA0UEFCwvFuygQrAAhiYgSChShIiIQOgEEFIgkH6+P45nZ2azZWZ3toXnd1177e7s2Zkz/Z6nHQNjjIEgCIIgCIK4oQnwdgcIgiAIgiAI70OikCAIgiAIgiBRSBAEQRAEQZAoJAiCIAiCIECikCAIgiAIggCJQoIgCIIgCAIkCgmCIAiCIAiQKCQIgiAIgiBAopAgCIIgCIIAiULCD3jppZfQvHlzlJeXm6cZDAarr+joaABA9+7d0b17d7f37bPPPsNdd92FJk2aICAgAPXr17fa7qOPPkLt2rVRUFCgar6MMSxduhRdunRBTEwMQkNDkZCQgH79+uHDDz80tzt+/DgMBgPmzJnj8rroOS89mDFjBgwGg6b/uLoOmzZtUhxPgYGBqFmzJgYPHozffvutQvuxY8fa3OfeYuzYsYp1MBqNaNKkCaZPn47CwkK3Lbd79+5ITEx06r+WfZa/Vq5cCUDat5988omOvXYf9tZJ/ho7dqz5uNu0aZO3u+02/G3/3agEebsDBGGPs2fPYvbs2fjkk08QEKB8hhk+fDimTJmimBYcHAwAePfddz3Sv88//xzZ2dm47bbbUF5ejpKSEqvtxowZg9dffx2zZ8/Giy++6HC+U6dOxeuvv45x48bhqaeeQmRkJE6cOIGff/4Z33//PR544AG9V8XneOCBB9C/f3+vLHvmzJno0aMHSkpKsHfvXrz44ovo1q0b9u3bh5tuusnc7vnnn8djjz3mlT7aIywsDD///DMAICcnB0uWLMFLL72EQ4cO4euvv/Zy76wj77Ocpk2beqE3rvP888/joYceMn/fs2cPHn30UfOxJahZsyZq1qyJjIwMNG/e3Btd9Qi1atVCRkYGGjVq5O2uEHYgUUj4NG+99RaqVauGlJSUCr/FxsaiQ4cOVv/nqYvrmjVrzGI1OTkZmZmZVtsFBQVh/PjxePnll/HMM88gPDzc5jyvX7+O+fPn45577sGiRYsUv40dO1ZhMa3MJCQkICEhwSvLvummm8zHVpcuXVCtWjWMGTMGX3zxhULUe+sGd/36dYSFhdn8PSAgQHFuDBgwAMePH8c333yDuXPnonbt2p7opiYs++zvNGrUSHF8CCut/NiSU5nWXU5ZWRlKS0thNBor7TpWJsh9TPgsxcXF+OijjzBq1KgKVkJHWHMfnz59GsOHD0dkZCSqVauG0aNHY9euXS65NLT0a/To0cjPz8fSpUvttisoKEBRURFq1arl1DJLSkowZswYVKlSBStXrkSvXr3QtGlTMMYU7RhjaNy4MQYNGqR6XgC/uU2dOhUNGjRASEgIateujUcffRS5ubmK/9avXx/JyclYuXIl2rRpg7CwMDRr1sw8n08++QTNmjVDREQEbrvttgruWWvu459//hndu3dHjRo1EBYWhrp16+KOO+7AtWvXKvR97ty5aNCgAapUqYKOHTti+/btdrebPdq1awcAOH/+vGK6pfu4TZs26NKlS4X/l5WVoXbt2oqHm+LiYrzyyito2rQpjEYjatasiXvvvRcXL15U/Fdsx7S0NLRp0wahoaGqrM2WiBvyiRMnAAD5+fl48sknFftx8uTJFUIc3nnnHXTt2hUxMTGIiIhAixYtMHv2bJtWcTkrVqxAeHg4HnjgAZSWlmrusxq2bt2KXr16ITIyEuHh4UhKSsKqVavMv+fn5yMoKAhvvPGGedo///yDgIAAmEwmRb8mTZqEmjVrVjhX3I019/HYsWNRpUoVHDp0CP369UNERARq1aqF1157DQCwfft2dO7cGREREbj55pvx6aefVphvdnY2xo8fj4SEBISEhKBBgwZ48cUXK+yL9957D61atUKVKlUQGRmJpk2b4tlnn9U8L+Einj17Nl555RU0aNAARqMRGzdutOk+/vvvvzFq1CjExMTAaDSiWbNmeOeddxRtysvL8corr6BJkyYICwtDtWrV0LJlS7z11lvObG7CDmQpJHyWHTt24NKlSwpXixzGWIWLW2BgoNU4tIKCAvTo0QOXL1/G66+/jsaNGyM9PR133nmnW/pujbi4ODRt2hSrVq3CfffdZ7NddHQ0GjdujHfffRcxMTEYOHAgmjRpoiq+Ljc3FykpKfjzzz+xefNmtG3bFuXl5Rg6dCg2bNiA3r17m9v+9NNPOHr0KN5++23V82KMYdiwYdiwYQOmTp2KLl26YP/+/Zg+fToyMjKQkZEBo9Fonsfvv/+OqVOn4rnnnoPJZMKLL76IlJQUTJ06FRs2bMDMmTNhMBjwzDPPIDk5GVlZWTYtYMePH8egQYPQpUsXfPzxx6hWrRrOnDmD9PR0FBcXK6yv77zzDpo2bYr58+cD4K68gQMHIisrCyaTyeF2tCQrKwsAcPPNN9ttd++99+Kxxx7D33//rXAzr127FmfPnsW9994LAOZ9smXLFjz99NNISkrCiRMnMH36dHTv3h2//fabYjvs2bMHf/75J6ZNm4YGDRogIiJC8zocOXIEAHdXXrt2Dd26dcPp06fx7LPPomXLlvjjjz/wwgsv4MCBA1i/fr35eDt69ChGjRplFo+///47Xn31VRw6dAgff/yxzeXNmzcPTz31FGbMmIFp06ap6qPl+SziOm2xefNm9OnTBy1btsRHH30Eo9GId999F4MHD8aSJUtw5513omrVqrj11luxfv16PPXUUwCADRs2wGg04sqVK9i5cyeSkpIAAOvXr0fPnj01x7K6i5KSEqSkpOChhx7CU089ha+++gpTp05Ffn4+li9fjmeeeQYJCQlYsGABxo4di8TERLRt2xYAzGEtAQEBeOGFF9CoUSNkZGTglVdewfHjx7F48WIAwNKlS/HII49g4sSJmDNnDgICAnDkyBEcPHjQ3A+18xK8/fbbuPnmmzFnzhxUrVpVcS7IOXjwIJKSklC3bl28+eabiIuLw5o1azBp0iT8888/mD59OgBg9uzZ5uOoa9euKCkpwaFDhyo8iBI6wAjCR3n99dcZAJadnV3hNwBWXx988AFjjLFu3bqxbt26mdu/8847DAD76aefFPMZP348A8AWL17scn8HDRrE6tWrZ7fN6NGjWWxsrMN57dy5k9WtW9e8XpGRkSw5OZl99tlnrLy83NwuKyuLAWBvvPEGy8rKYs2bN2fNmzdnx48fN7cpKytjDRs2ZEOHDlUsY8CAAaxRo0bm+amZV3p6OgPAZs+erZjX119/zQCwRYsWmafVq1ePhYWFsdOnT5un7du3jwFgtWrVYgUFBebp3333HQPAfvjhB/O06dOnM/klatmyZQwA27dvn83tJtahRYsWrLS0VLE9AbAlS5bY/C9jjG3cuJEBYF9//TUrKSlh165dY7/++itr0qQJa968OcvJyVG0HzNmjGKf//PPPywkJIQ9++yzinYjRoxgsbGxrKSkhDHG2JIlSxgAtnz5ckW7Xbt2MQDs3XffNU+rV68eCwwMZH/99Zfdvsv7FBERwUpKSlhJSQm7ePEie+utt5jBYGC33norY4yxWbNmsYCAALZr1y7Ff8U2Xr16tdV5l5WVsZKSEvbZZ5+xwMBAdvnyZfNv3bp1Y//5z39YWVkZmzBhAgsJCWFffPGF6j5bO587depkbiP2rfxc7dChA4uJiWFXrlwxTystLWWJiYksISHBfGxPmzaNhYWFscLCQsYYYw888ADr378/a9myJXvxxRcZY4ydOXOmwjGsJ+LY+vbbb23+tnHjRvM0sU3kx0hJSQmrWbMmA8D27Nljnn7p0iUWGBjInnjiCfO08ePHsypVqrATJ04oljVnzhwGgP3xxx+MMcYmTJjAqlWrZrfvaucl9lGjRo1YcXGxoq21/devXz+WkJDA8vLyFG0nTJjAQkNDzcdXcnIya926td0+EvpA7mPCZzl79qwio9iSESNGYNeuXYrXsGHDrLbdvHkzIiMjKyQujBw5Uu9u2yUmJgYXLlxw6Eq79dZbceTIEaSnp+PZZ59Fx44dsWHDBtxzzz0YMmRIBffWnj170KFDB8TGxuLXX39FvXr1zL8FBARgwoQJWLlyJU6ePAmAW3/S09PxyCOPVLCK2JuXSAQYO3as4j///e9/ERERgQ0bNiimt27dWhG/1qxZMwDcvS+37InpwrVpjdatWyMkJAQPPvggPv30Uxw7dsxm20GDBiksTC1btnQ4fzl33nkngoODER4ejk6dOiE/Px+rVq1CtWrV7P6vRo0aGDx4MD799FNz7GdOTg6+//573HPPPQgK4s6ZlStXolq1ahg8eDBKS0vNr9atWyMuLq5CFmrLli0dWinlFBQUIDg4GMHBwahZsyYmT56MAQMGYMWKFeblJyYmonXr1orl9+vXr4Ibc+/evRgyZAhq1KiBwMBABAcH45577kFZWRkOHz6sWG5hYSGGDRuGL7/8EmvXrsXo0aNV9zksLKzC+fzRRx/ZXccdO3Zg+PDhqFKlinl6YGAgUlNTcfr0afz1118AgF69euH69evYtm0bAG4R7NOnD3r37o1169aZpwFQWNOtId9epaWlbnU1GwwGDBw40Pw9KCgIjRs3Rq1atdCmTRvz9OrVqyMmJkZxfK9cuRI9evRAfHy8or8DBgwAwK+JAHDbbbchNzcXI0eOxPfff49//vmnQj/UzkswZMgQc9KfLQoLC7FhwwbcfvvtCA8PV8x34MCBKCwsNId83Hbbbfj999/xyCOPYM2aNcjPz9eyGQkNkCgkfJbr168jODjYpvuoZs2aaNeuneJlS0BeunQJsbGxFaZbm+ZOQkNDwRhTVRokODgY/fr1w6uvvoo1a9bg1KlT6N69O1auXImffvpJ0XbdunU4f/48HnjgAavC5b777kNYWBjef/99ANy9GhYWZtWNbW9ely5dQlBQEGrWrKmYbjAYEBcXh0uXLimmV69eXfE9JCTE7nR726VRo0ZYv349YmJi8Oijj5oD+a3FFdWoUUPxXbi0r1+/bnP+cl5//XXs2rULmzdvxnPPPYfz589j2LBhKCoqcvjf++67D2fOnDGLjSVLlqCoqEghpM+fP4/c3FyEhISYxZt4ZWdnV7gx24ovtYVcYO3fvx+5ublYtWqVWaCfP38e+/fvr7DsyMhIMMbMyz958iS6dOmCM2fO4K233sKWLVuwa9cuc8yX5fa8cOEC1qxZg44dO5pdsmoJCAiocD43adLEZvucnBwwxqxum/j4eAAwH49JSUkIDw/H+vXrceTIERw/ftwsCnfs2IGrV69i/fr1aNiwIRo0aGBzmcePH6+wzSwFkZ6Eh4cjNDRUMS0kJKTC+SOmy8+f8+fP48cff6zQ3//85z8AYN7Hqamp+Pjjj3HixAnccccdiImJQfv27c3Hr5Z5CdQcr5cuXUJpaSkWLFhQYb5CCIv5Tp06FXPmzMH27dsxYMAA1KhRA7169bJaJopwDYopJHyW6OhoFBcXo6CgwKkYKjk1atTAzp07K0zPzs52ab5auXz5MoxGo8KyoZYaNWpg8uTJ2LRpEzIzMxUWhKeeegpHjx7FPffcg9LSUtxzzz2K/5pMJowZMwYffvghnnzySSxevBijRo2yKiDtzatGjRooLS3FxYsXFcKQMYbs7GzceuutmtdLC126dEGXLl1QVlaG3377DQsWLMDkyZMRGxuLu+66S7flNGzY0Jxc0rVrV4SFhWHatGlYsGABnnzySbv/7devH+Lj47F48WL069cPixcvRvv27RUZ8dHR0ahRowbS09OtziMyMlLxXWuMmxBYtoiOjkZYWJjNmEDxcPXdd9+hoKAAaWlpCovxvn37rP6vbt26mDt3Lm6//XakpKTg22+/rSBq9CIqKgoBAQE4d+5chd/Onj0LQFqPkJAQdO7cGevXr0dCQgLi4uLQokULNGzYEABP9NiwYQOSk5PtLjM+Ph67du1STLMnXL1JdHQ0WrZsiVdffdXq70I4AzwW9t5770VBQQF++eUXTJ8+HcnJyTh8+DDq1aunaV6AuuM1KirKbNV99NFHrbYRAj0oKAhPPPEEnnjiCeTm5mL9+vV49tln0a9fP5w6dcpuNQdCGyQKCZ9F1Cc7evSo2f3nLN26dcM333yDn376yezyAOAwE1hvjh075rBcTklJCfLz8ytYuwDgzz//BFDxIhwQEID//e9/qFKlCsaOHYuCggI8/PDDijaTJk3Cu+++i+HDhyM3NxcTJkywunx78+rVqxdmz56NL774Ao8//rj5P8uXL0dBQQF69erleCPoQGBgINq3b4+mTZviyy+/xJ49e3QVhZY8/fTT+OSTT/Daa69h/PjxFUSbZd9SU1Mxf/58bNmyBb/99hv+97//KdokJydj6dKlKCsrQ/v27d3Wb1skJydj5syZqFGjhl3LmLi5y5OHGGP44IMPbP6nb9++WLNmDQYNGoTk5GR8//33Lj/UWSMiIgLt27dHWloa5syZY07MKS8vxxdffIGEhASFy713796YOnUqIiMjzS7iiIgIdOjQAQsWLMDZs2cduo5DQkLsim1fIjk5GatXr0ajRo0QFRWl6j8REREYMGAAiouLMWzYMPzxxx+oV6+eU/NyRHh4OHr06IG9e/eiZcuWZm+BI6pVq4bhw4fjzJkzmDx5Mo4fP16p6zt6GhKFhM8iSsps377dZVE4ZswYzJs3D3fffTdeeeUVNG7cGD/99BPWrFkDQFnm5bPPPsN9992Hjz/+uILFzZKDBw+as/Sys7Nx7do1LFu2DACvlSi/WJWXl2Pnzp24//777c4zLy8P9evXx3//+1/07t0bderUwdWrV7Fp0ya89dZbaNasmdW6jQDw5ptvIjIyEo888giuXr1qzrYEeOZs//798dNPP6Fz585o1aqV3X5Ym1efPn3Qr18/PPPMM8jPz0enTp3M2cdt2rRBamqq3Xm6wvvvv4+ff/4ZgwYNQt26dVFYWGi2dDm6mbtKcHAwZs6ciREjRuCtt95ymE1733334fXXX8eoUaMQFhZWIcv9rrvuwpdffomBAwfisccew2233Ybg4GCcPn0aGzduxNChQ3H77be7bX0mT56M5cuXo2vXrnj88cfRsmVLlJeX4+TJk1i7di2mTJmC9u3bo0+fPggJCcHIkSPx9NNPo7CwEO+99x5ycnLszr9z587YsGED+vfvj759+2L16tVOZX07YtasWejTpw969OiBJ598EiEhIXj33XeRmZmJJUuWKCxWvXr1QllZGTZs2KAo39K7d29Mnz4dBoMBPXv21L2P3uKll17CunXrkJSUhEmTJqFJkyYoLCzE8ePHsXr1arz//vtISEjAuHHjEBYWhk6dOqFWrVrIzs7GrFmzYDKZzJZ/tfPSyltvvYXOnTujS5cuePjhh1G/fn1cuXIFR44cwY8//miOYR48eDASExPRrl071KxZEydOnMD8+fNRr149m5nNhJN4McmFIBzSpUsXNnDgwArTAbBHH33U5v8ss48ZY+zkyZMsJSWFValShUVGRrI77riDrV69mgFg33//vbnd4sWLVWckiwxZa6/p06cr2m7YsIEBYLt377Y7z6KiIjZnzhw2YMAAVrduXWY0GlloaChr1qwZe/rpp9mlS5fMbeUZw3LeeOMNBoC98MILiumffPIJA8CWLl1aYblq53X9+nX2zDPPsHr16rHg4GBWq1Yt9vDDD1fIzK1Xrx4bNGhQheVY23fWlm2ZfZyRkcFuv/12Vq9ePWY0GlmNGjVYt27dFBnLttZBLNdyn1hiL0OUMcbat2/PoqKiWG5uLmOsYvaxnKSkJAaAjR492urvJSUlbM6cOaxVq1YsNDSUValShTVt2pSNHz+e/f333+Z2trajLUT2sSOuXr3Kpk2bxpo0acJCQkKYyWRiLVq0YI8//rgi4//HH38097F27drsqaeeYj/99FOFbFmRfSwnMzOTxcXFsVtuuYVdvHjRpT5by15ljLEtW7awnj17soiICBYWFsY6dOjAfvzxxwr/Ly8vZ9HR0QwAO3PmjHn6r7/+ygCwW265xe7yXcWZ7GNr28TadmbM+nFy8eJFNmnSJNagQQMWHBzMqlevztq2bcuee+45dvXqVcYYY59++inr0aMHi42NZSEhISw+Pp6NGDGC7d+/X/O87J1/tvZfVlYWu++++1jt2rVZcHAwq1mzJktKSmKvvPKKuc2bb77JkpKSWHR0NAsJCWF169Zl999/v6IyAqEPBsY8XKWTIDSwfPly3HnnnThx4oRbRmGYOXMmpk2bhpMnT7p99IzU1FQcO3YMv/76q1uXY4877rgD27dvNwfMEwRBEISA3MeET5OSkoJbb70Vs2bNwsKFC12al/h/06ZNUVJSgp9//hlvv/027r77brcLwqNHj+Lrr7+2OraruykqKsKePXuwc+dOrFixAnPnziVBSBAEQVSARCHh0xgMBnzwwQf44YcfUF5ernm4Oznh4eGYN28ejh8/jqKiItStWxfPPPOM6tEWXOHkyZNYuHAhOnfu7PZlWXLu3DkkJSWhatWqGD9+PCZOnOjxPhAEQRC+D7mPCYIgCIIgCCpeTRAEQRAEQZAoJAiCIAiCIECikCAIgiAIggAlmnic8vJynD17FpGRkZqHriIIgiAIgtACYwxXrlxBfHy8w2RNEoUe5uzZs6hTp463u0EQBEEQxA3EqVOnHJZfI1HoYcSYqadOnULVqlW93BuCIAiCICoz+fn5qFOnjt0x2wUkCj2McBlXrVqVRCFBEARBEB5BTcgaJZoQBEEQBEEQJAoJgiAIgiAIch8TBEEQBKGCsjJgyxbg3DmgVi2gSxcgMNDbvSL0hCyFBEEQBEHYJS0NaNwY6NEDGDWKvzduzKcTlQcShQRBEARB2CQtDRg+HGjRAsjIAK5c4e8tWvDpJAwrDwbGGPN2J24k8vPzYTKZkJeXR9nHBEEQhE9TVsYtgi1aAN99B8hrH5eXA8OGAZmZwN9/kyvZV9GiO8hSSBAEQRCEVbZsAY4fB559VikIAf596lQgK4u3I/wfEoUEQRAEQVjl3Dn+npho/XcxXbQj/BsShQRBEARBWKVWLf6emWn9dzFdtCP8GxKFBEEQBEFYpUsXoH59YOZMHkMop7wcmDULaNCAtyP8HxKFBEEQBEFYJTAQePNNYOVKnlQizz4eNoxPnzOHkkwqC1S8miAIgiAIm6SkAMuWAVOmAElJ0vQGDfj0lBTv9Y3QF7IUEgRBEARhl5QU4MgRoFkz/r17d16GhgRh5YJEIUEQBEEQDgkMBEJC+OcqVchlXBkhUUgQBEEQhCqKivj79eve7QfhHkgUEgRBEAShisJC/n7tmnf7QbgHEoUEQRAEQahCiEKyFFZOSBQSBEEQBKEKshRWbkgUEgRBEAShCrIUVm5IFBIEQRAE4RDGpEQTshRWTrwqCn/55RcMHjwY8fHxMBgM+O6778y/lZSU4JlnnkGLFi0QERGB+Ph43HPPPTh79qxiHkVFRZg4cSKio6MRERGBIUOG4PTp04o2OTk5SE1NhclkgslkQmpqKnJzcxVtTp48icGDByMiIgLR0dGYNGkSiouLFW0OHDiAbt26ISwsDLVr18ZLL70Expiu24QgCIIgfJGSEi4MAbIUVla8KgoLCgrQqlUrLFy4sMJv165dw549e/D8889jz549SEtLw+HDhzFkyBBFu8mTJ2PFihVYunQptm7diqtXryI5ORllZWXmNqNGjcK+ffuQnp6O9PR07Nu3D6mpqebfy8rKMGjQIBQUFGDr1q1YunQpli9fjilTppjb5Ofno0+fPoiPj8euXbuwYMECzJkzB3PnznXDliEIgiAI30K4jgFuKSSbSCWE+QgA2IoVK+y22blzJwPATpw4wRhjLDc3lwUHB7OlS5ea25w5c4YFBASw9PR0xhhjBw8eZADY9u3bzW0yMjIYAHbo0CHGGGOrV69mAQEB7MyZM+Y2S5YsYUajkeXl5THGGHv33XeZyWRihYWF5jazZs1i8fHxrLy8XPV65uXlMQDm+RIEQRCEP3D+PGNcCvLX9eve7hGhBi26w69iCvPy8mAwGFCtWjUAwO7du1FSUoK+ffua28THxyMxMRHbtm0DAGRkZMBkMqF9+/bmNh06dIDJZFK0SUxMRHx8vLlNv379UFRUhN27d5vbdOvWDUajUdHm7NmzOH78uM0+FxUVIT8/X/EiCIIgCH9DxBMKKK6w8uE3orCwsBD/93//h1GjRqFq1aoAgOzsbISEhCAqKkrRNjY2FtnZ2eY2MTExFeYXExOjaBMbG6v4PSoqCiEhIXbbiO+ijTVmzZpljmU0mUyoU6eOltUmCIIgCJ9A7j4GKK6wMuIXorCkpAR33XUXysvL8e677zpszxiDwWAwf5d/1rMN+zegwtp/BVOnTkVeXp75derUKYf9JwiCIAhfw1IUkqWw8uHzorCkpAQjRoxAVlYW1q1bZ7YSAkBcXByKi4uRk5Oj+M+FCxfMVry4uDicP3++wnwvXryoaGNp7cvJyUFJSYndNhcuXACAChZEOUajEVWrVlW8CIIgCMLfIEth5cenRaEQhH///TfWr1+PGjVqKH5v27YtgoODsW7dOvO0c+fOITMzE0lJSQCAjh07Ii8vDzt37jS32bFjB/Ly8hRtMjMzce7cOXObtWvXwmg0om3btuY2v/zyi6JMzdq1axEfH4/69evrvu4EQRAE4UtQTGHlx6ui8OrVq9i3bx/27dsHAMjKysK+fftw8uRJlJaWYvjw4fjtt9/w5ZdfoqysDNnZ2cjOzjYLM5PJhPvvvx9TpkzBhg0bsHfvXtx9991o0aIFevfuDQBo1qwZ+vfvj3HjxmH79u3Yvn07xo0bh+TkZDRp0gQA0LdvXzRv3hypqanYu3cvNmzYgCeffBLjxo0zW/ZGjRoFo9GIsWPHIjMzEytWrMDMmTPxxBNP2HUfEwRBEERlgCyFNwBuzoS2y8aNGxmACq8xY8awrKwsq78BYBs3bjTP4/r162zChAmsevXqLCwsjCUnJ7OTJ08qlnPp0iU2evRoFhkZySIjI9no0aNZTk6Oos2JEyfYoEGDWFhYGKtevTqbMGGCovwMY4zt37+fdenShRmNRhYXF8dmzJihqRwNY1SShiAIgvBPfvxRWZJm5Upv94hQgxbdYWCMyk96kvz8fJhMJuTl5VF8IUEQBOE3LFsG/Pe/0vdvvwWGD/defwh1aNEdPh1TSBAEQRCEb0DZx5UfEoUEQRAEQTjEMtGEYgorHyQKCYIgCIJwCFkKKz8kCgmCIAiCcAhlH1d+SBQSBEEQBOEQshRWfkgUEgRBEAThEIoprPyQKCQIgiAIwiFkKaz8kCgkCIIgCMIhQhQGB/N3shRWPkgUEgRBEAThECEKo6L4O1kKKx8kCgmCIAiCcIiIKaxenb+TpbDyQaKQIAiCIAiHkKWw8kOikCAIgiAIh1iKQrIUVj5IFBIEQRAE4RCyFFZ+SBQSBEEQBOEQIQopprDyQqKQIAiCIAiHiEQTshRWXkgUEgRBEAThELIUVn5IFBIEQRAE4RCKKaz8kCgkCIIgCMIh1rKPGfNefwj9IVFIEARBEIRDLGMKgYrjIRP+DYlCgiAIgiAcYmkpBCiusLIR5O0OEARBEIQ7KCsDtmwBzp0DatUCunQBAgO93Sv/RYjCKlWAoCCgtJTHFYrEE8L/IUshQRAEUelISwMaNwZ69ABGjeLvjRvz6YR2GJNEYWgoEB7OP5OlsHJBopAgCIKoVKSlAcOHAy1aABkZwJUr/L1FCz6dhKF2ioulz6GhQFgY/0wZyJULEoUEQRBEpaGsDJgyBUhOBr77DujQgbs7O3Tg35OTgSef5O0I9YgkE4AshZUZEoUEQRBEpWHLFuD4ceDZZ4EAiztcQAAwdSqQlcXbEeqRZxmHhJClsLLiVVH4yy+/YPDgwYiPj4fBYMB3332n+J0xhhkzZiA+Ph5hYWHo3r07/vjjD0WboqIiTJw4EdHR0YiIiMCQIUNw+vRpRZucnBykpqbCZDLBZDIhNTUVubm5ijYnT57E4MGDERERgejoaEyaNAnFcns5gAMHDqBbt24ICwtD7dq18dJLL4FRkSaCIAif4dw5/p6YaP13MV20I9QhRKHRCBgMZCmsrHhVFBYUFKBVq1ZYuHCh1d9nz56NuXPnYuHChdi1axfi4uLQp08fXLlyxdxm8uTJWLFiBZYuXYqtW7fi6tWrSE5ORpnMNzBq1Cjs27cP6enpSE9Px759+5Cammr+vaysDIMGDUJBQQG2bt2KpUuXYvny5ZgyZYq5TX5+Pvr06YP4+Hjs2rULCxYswJw5czB37lw3bBmCIAjCGWrV4u+ZmdZ/F9NFO0Id8iQTgCyFlRbmIwBgK1asMH8vLy9ncXFx7LXXXjNPKywsZCaTib3//vuMMcZyc3NZcHAwW7p0qbnNmTNnWEBAAEtPT2eMMXbw4EEGgG3fvt3cJiMjgwFghw4dYowxtnr1ahYQEMDOnDljbrNkyRJmNBpZXl4eY4yxd999l5lMJlZYWGhuM2vWLBYfH8/Ky8tVr2deXh4DYJ4vQRAEoR+lpYzVr8/Y4MGMlZUpfysr49MbNODtCPXs388YwFhsLP/erx///umn3u0X4RgtusMpS+GpU6ewZcsWrFmzBnv27EGRPAJVJ7KyspCdnY2+ffuapxmNRnTr1g3btm0DAOzevRslJSWKNvHx8UhMTDS3ycjIgMlkQvv27c1tOnToAJPJpGiTmJiI+Ph4c5t+/fqhqKgIu3fvNrfp1q0bjEajos3Zs2dx/Phxm+tRVFSE/Px8xYsgCIJwD4GBwJtvAitXAsOGKbOPhw3j0+fMoXqFWiFL4Y2BalF44sQJTJ06FfXr10f9+vXRrVs3DBgwAO3atYPJZEKfPn3w7bffory8XJeOZWdnAwBiY2MV02NjY82/ZWdnIyQkBFHy8upW2sTExFSYf0xMjKKN5XKioqIQEhJit434LtpYY9asWeZYRpPJhDp16thfcYIgCMIlUlKAZcuAAweApCSgalX+npnJp6ekeLuH/oc8phCgmMLKiipR+Nhjj6FFixb4+++/8dJLL+GPP/5AXl4eiouLkZ2djdWrV6Nz5854/vnn0bJlS+zatUu3DhoMBsV3xliFaZZYtrHWXo827N8kE3v9mTp1KvLy8syvU6dO2e07QRAE4TopKcCRI9KQbO3aAX//TYLQWchSeGOgapi7kJAQHD16FDVr1qzwW0xMDHr27ImePXti+vTpWL16NU6cOIFbb73VpY7FxcUB4Fa4WrKI4AsXLpgtdHFxcSguLkZOTo7CWnjhwgUkJSWZ25w/f77C/C9evKiYz44dOxS/5+TkoKSkRNHG0iJ44cIFABWtmXKMRqPC5UwQBEF4hsBAyZIVGkouY1cQUWJCFPqjpZCGPXSMKkvhG2+8YVUQWmPgwIEYPny4S50CgAYNGiAuLg7r1q0zTysuLsbmzZvNgq9t27YIDg5WtDl37hwyMzPNbTp27Ii8vDzs3LnT3GbHjh3Iy8tTtMnMzMQ5WY2CtWvXwmg0om3btuY2v/zyi6JMzdq1axEfH4/69eu7vL4EQRCEvhQWShYusmi5hr9bCmnYQ3VoTjS5fv06rsmOghMnTmD+/PlYs2aN5oVfvXoV+/btw759+wDw5JJ9+/bh5MmTMBgMmDx5MmbOnIkVK1YgMzMTY8eORXh4OEaNGgUAMJlMuP/++zFlyhRs2LABe/fuxd13340WLVqgd+/eAIBmzZqhf//+GDduHLZv347t27dj3LhxSE5ORpMmTQAAffv2RfPmzZGamoq9e/diw4YNePLJJzFu3DhUrVoVAC9rYzQaMXbsWGRmZmLFihWYOXMmnnjiCYfubIIgCMLz5OVJn/1FvPgq/hxTSMMeakBranOfPn3Ye++9xxhjLCcnh8XGxrKEhAQWGhrK3n33XU3z2rhxIwNQ4TVmzBjGGC9LM336dBYXF8eMRiPr2rUrO3DggGIe169fZxMmTGDVq1dnYWFhLDk5mZ08eVLR5tKlS2z06NEsMjKSRUZGstGjR7OcnBxFmxMnTrBBgwaxsLAwVr16dTZhwgRF+RnGGNu/fz/r0qULMxqNLC4ujs2YMUNTORrGqCQNQRCEpzh0iJdNARirW9fbvfFvPviAb8fBg/n311/n3++5x7v9cgSVKNKmOwyMaRuSIzo6Gps3b8Z//vMffPjhh1iwYAH27t2L5cuX44UXXsCff/6pu3CtTOTn58NkMiEvL89shSQIgiD0Z8cOPuYxAERHAxcverc//szChcDEicB//wt8803F777Kpk3cVZyRIR0LcjIyeGb6xo1A9+6e7p1n0KI7NLuPr127hsjISAA8pi4lJQUBAQHo0KEDTpw44VyPCYIgCEJn5KOZkvvYNSwTTfwlppCGPdSGZlHYuHFjfPfddzh16hTWrFljLhx94cIFsnwRBEEQPoOlKKSh6p3HMtHEX2IKadhDbWgWhS+88AKefPJJ1K9fH+3bt0fHjh0BcKthmzZtdO8gQRAEQThDTo7yuxA2hHYsE038xVLYpQtQvz4wcyZgObZGeTkwaxbQoAFvR6gUhfv37zePVDJ8+HCcPHkSv/32G9LT081tevXqhXnz5rmnlwRBEAShEbmlEPB9AePL+KulUD7s4dChNOyhI1SJwjZt2uCff/4BADRs2BDBwcFo06YNAgKkv992221o2rSpe3pJEARBEBohUagf/hpTCEjDHm7cSMMeOkKVKKxWrRqysrIAAMePH9dtfGOCIAiCcBckCvXDXy2FgpQU4Oab+efgYC4QadjDiqga5u6OO+5At27dUKtWLRgMBrRr1w6BNmytx44d07WDBEEQhGeobMOAkSjUD3+NKZRz6RJ/LykBOnf272PbXagShYsWLUJKSgqOHDmCSZMmYdy4ceayNARBEIT/k5YGTJkCHD8uTatfn8dj+as1hUShfvi7pRCQRCHA4wqjorzXF19FlSgEgP79+wMAdu/ejccee4xE4Q1MZbMmEMSNjhgGLDkZWLKE127LzOQZm8OH+2/cFYlC/bA19vH167zUj6+P9lpYCBQUSN9JFFpHc0ma+fPno6SkpML0y5cvIz8/X5dOEb4LDSpOEJWLsjJuIUxOBr77jo/6UKUKf//uOz79ySd5O3+DRKF+WCaaCEsh4B+lfuRWQoCLQqIimkXhXXfdhaVLl1aY/s033+Cuu+7SpVOEb0KDihNE5WPLFu4yfvZZIMDijhAQAEydCmRl8Xb+hhCF0dH8nUSh89iKKQT8Y7v+W0DFDNmwrKNZFO7YsQM9evSoML179+7YsWOHLp0ifI/KbE0giBuZyjoMGGNS8er4eP7uD+LFV7F0HwcF8SxewD/iCi1FIVkKraNZFBYVFaG0tLTC9JKSElz3hyODcIrKbE0giBuZyjoMWGEhUFzMP5MolCgrAzZt4rGjmzapf5C3FIWAf2UgW7qPyVJoHc2i8NZbb8WiRYsqTH///ffRtm1bXTpF+B6V1ZpAEDc6lXUYMOE6DggAYmL4Z38QL+7ElZhwy5hCwL8ykMlSqA7V2ceCV199Fb1798bvv/+OXr16AQA2bNiAXbt2Ye3atbp3kPAN5NaEDh0q/u6v1gSCuNERw4ANH86HAXv2WSn7eNYsPgzYsmX+V2FAiMJq1YCICP75RhaFrmaYk6XwxkCzpbBTp07IyMhAnTp18M033+DHH39E48aNsX//fnTxt0dJQjWV1ZpAEIQ0DNiOHZVnGDC5KBQWLX8QL+5Aj5hwy0QTgCyFlRHNlkIAaN26Nb788ku9+0L4MHJrwrBhPIawMlgTCILgpKQAhw4Bzz3Hvz/1FD+3/fWcJlEoIWLClyyxHROelMTbde9ufR7+bikUojAwkItfshRaR5WlsEBe8dEN7Qn/QFgTtm+vPNYEgiAkLl+WPteq5b+CECBRKEePmHB/jykU7uO6dfk7WQqto0oUNm7cGDNnzsTZs2dttmGMYd26dRgwYADefvtt3TpIeA41WWkpKcDIkcpp+/eTICSIyoA87iovz3v90AMShRKuZpgzVnkshQ0a8HeyFFpHlft406ZNmDZtGl588UW0bt0a7dq1Q3x8PEJDQ5GTk4ODBw8iIyMDwcHBmDp1Kh588EF395vQGS3jnv7xh/J7djbPYCMIwr+Rx135uygUNQpJFCpjwr/7TulCVhMTLkr7AP4bUygeeIQoJEuhdVRZCps0aYJvv/0WR48exV133YWzZ89i2bJl+OCDD7Bp0ybUrl0bH3zwAY4fP46HH34Ygf7sc7gB0TJSCWPA77/zz+LCcvq05/tMEIT+VEZLYVQUiUIRE75yJc8wl1/nhw3j0+fMsR0uIB/GjiyFlRtNiSYJCQl4/PHH8fjjj7urP4SHscxKE0JPZKUNG8az0oYO5ReM8+f5yWUwAO3b84sKiUKCqBxUJkshuY+ViJjwsWO5CBQ0aKC+HA0AhIRIn/3FUlhUBFy9yj+TpdA+mkvSEJULrSOVHDjA32+6Cbj5Zv751CmPdZcgCDdSGS2FJAolUlKAVq2k70FB/JruKCZcnmRiMEjT/cVSKI7rwECgTh3+mSyF1iFReIOjNStt/37+3rIlkJDAP5OlkCD8n7IyKQ4PIFGoFWeHj/M08gzz0lJg927H/7FWoxDwH0uhsIDXqMGrZgBkKbQFicIbHK1ZaUIUtmhBopAgKhM5OTxmWODvlhRPikJXho/zNEIgNW3K3zdvdvwfa5nHgP9ZCqOjJVHo78e3u/BpUVhaWopp06ahQYMGCAsLQ8OGDfHSSy+hXDakBmMMM2bMQHx8PMLCwtC9e3f8YZEeW1RUhIkTJyI6OhoREREYMmQITlsomZycHKSmpsJkMsFkMiE1NRW54qryLydPnsTgwYMRERGB6OhoTJo0CcXytCw/ROtIJcJ9TJZCgqhcWI74QJZCdWhJ1PM2jEkCSbiMf/nF8f9siUJ/tBRGRvLP169zSymhxKdF4euvv473338fCxcuxJ9//onZs2fjjTfewIIFC8xtZs+ejblz52LhwoXYtWsX4uLi0KdPH1yR2YYnT56MFStWYOnSpdi6dSuuXr2K5ORklMns+6NGjcK+ffuQnp6O9PR07Nu3D6mpqebfy8rKMGjQIBQUFGDr1q1YunQpli9fjilTpnhmY7gJLVlppaVSORoShYQ9/MWVRkgIsSASCUgUOkaP4eM8SV6e1BchCrdtA0pK7P/PWuFqwD8thUIUAuRCtgrTyE8//cS2bNli/r5w4ULWqlUrNnLkSHb58mWts7PLoEGD2H333aeYlpKSwu6++27GGGPl5eUsLi6Ovfbaa+bfCwsLmclkYu+//z5jjLHc3FwWHBzMli5dam5z5swZFhAQwNLT0xljjB08eJABYNu3bze3ycjIYADYoUOHGGOMrV69mgUEBLAzZ86Y2yxZsoQZjUaWl5enep3y8vIYAE3/8QTLlzNWsyZj/FmSvxIS+HTBH3/w6RERjJWVMfbPP1LbwkLv9Z3wLZYvZ6x+feWxVL++8lgifI/vvuP76uabpf1WVOTtXjlHeTljQUF8HU6dYuziRWmdSkr0W87GjXyeGRnWf9+2jf++caN+y3SFv/9WXsNr1ODfZbc+q6xdy9u1aqWc/tFHfPqgQW7rsi68/DLv5wMP8O8hIfz7iRPe7Zen0KI7NFsKn3rqKeT/64w/cOAApkyZgoEDB+LYsWN44okndBWsnTt3xoYNG3D48GEAwO+//46tW7di4MCBAICsrCxkZ2ejb9++5v8YjUZ069YN27ZtAwDs3r0bJSUlijbx8fFITEw0t8nIyIDJZEL79u3NbTp06ACTyaRok5iYiPj4eHObfv36oaioCLvtROoWFRUhPz9f8fJFUlKAZ55RTpsyRZmVJlzHLVrwzOTq1aUnRzuD3RA3EP7kSiOUWBb3BfzXWnjtmuQalNcpBPR1deoxfJwnkVvMAgKksCBHLmRbiSb+YikU7uPoaP4urIU+ejv2KppFYVZWFpo3bw4AWL58OZKTkzFz5ky8++67+Omnn3Tt3DPPPIORI0eiadOmCA4ORps2bTB58mSM/HectezsbABAbGys4n+xsbHm37KzsxESEoKoqCi7bWJiYiosPyYmRtHGcjlRUVEICQkxt7HGrFmzzHGKJpMJdUQ+vA8iTOlB/1av3LBB+bs88xjgpQnIhUwI/M2VRigRN87YWL7fAP8VhcJ1HBTEBaHc7amngHF1+DhPI4+tA4CuXfm7o2QTf48pFGJYrDdlINtGsygMCQnBtX/PqvXr15stcNWrV9fdCvb111/jiy++wFdffYU9e/bg008/xZw5c/Dpp58q2hnkhZPAk08sp1li2cZae2faWDJ16lTk5eWZX6d8uKifuAH07MnfN21SxprIM48FQhT68GoRHkJrzUtCPZ6I0ZTfOE0m/tnfRWG1avzhNSDAPVYtrYl63kZuKQQkUbh1q/1jyt+zj21ZCkkUVkSzKOzcuTOeeOIJvPzyy9i5cycGDRoEADh8+DAShELQiaeeegr/93//h7vuugstWrRAamoqHn/8ccyaNQsAEBcXBwAVLHUXLlwwW/Xi4uJQXFyMHHkBLittzp8/X2H5Fy9eVLSxXE5OTg5KSkoqWBDlGI1GVK1aVfHyVcSFtFs3fvJcvQrs2CH9Ls88FpClkBD4myvNX/BUuRP5jdMbolBP4SsXhQJ3JJu4Onycp7G0FLZuzQVSXp50fbeGrUQTf7MUClFIZWlso1kULly4EEFBQVi2bBnee+891K5dGwDw008/oX///rp27tq1awiwMDkEBgaaS9I0aNAAcXFxWLdunfn34uJibN68GUlJSQCAtm3bIjg4WNHm3LlzyMzMNLfp2LEj8vLysHPnTnObHTt2IC8vT9EmMzMT52R3tLVr18JoNKJt27a6rre3EDeAqCigVy/+ef166bcTJ/hna5ZCEoWEv7nS/AFPxmjKBYOnRaHewteeKNRbwIjh4zZvBpKSuOBISuLHu6Ph4zyNpcUsMBDo3Jl/thdXWFliCoUYJkuhHdyc9OISY8aMYbVr12YrV65kWVlZLC0tjUVHR7Onn37a3Oa1115jJpOJpaWlsQMHDrCRI0eyWrVqsfz8fHObhx56iCUkJLD169ezPXv2sJ49e7JWrVqx0tJSc5v+/fuzli1bsoyMDJaRkcFatGjBkpOTzb+XlpayxMRE1qtXL7Znzx62fv16lpCQwCZMmKBpnXw1+5gxxnr25BlZX37J2Acf8M9JSfy3LVukjGQ5Cxfy6bff7vn+Er5FaSnPMh48mGc2yikr49MbNODtCMd4ent26sTP5WXLGOvXj3/+5BN95m2P5csZMxj4+mRkMHblCn8fPJhPdyZr/YsveP9795amNWnCp23erF/f5XTvLmU4f/yxbx7nDz7I+zdjhjRt1iw+7Y47bP/vjTd4m9RU5fSDB/n06tXd01+9iIzk/Tx8mH+/807+ff587/bLU2jRHZpF4ahRo9iiRYvYYbF13Uh+fj577LHHWN26dVloaChr2LAhe+6551iRrE5CeXk5mz59OouLi2NGo5F17dqVHThwQDGf69evswkTJrDq1auzsLAwlpyczE6ePKloc+nSJTZ69GgWGRnJIiMj2ejRo1lOTo6izYkTJ9igQYNYWFgYq169OpswYQIr1FiLxZdF4S238BNl1SrGjh/nnwMDGcvLY+zdd/n3gQOV/xFlLG691Tt9JnwLcYNPTublOPLz+bsrN/gbFU+XOxGiaeNGxkaM4J/fekufedvCXcJXPKwOHy5Na9OGT/vpJ9f7bY0WLSRR6CslaCxJSeH9W7hQmvbrr3yaycQNAhs3VtzeoqTLuHHK6VlZfHpoqJs77gJFRdJ+uXSJT3vgAf795Ze92zdPoUV3BGm1LFapUgVvvvkmxo8fj7i4OHTr1g3dunVD9+7d0VSMm6MTkZGRmD9/PubPn2+zjcFgwIwZMzBjxgybbUJDQ7FgwQJF0WtLqlevji+++MJuf+rWrYuVK1c66rbfIlxFJhNQrx533xw5wuN7LDOPBSKZmtzHBCC50h54gLvQBA0a+J4rzdfxdIymPO7KU+5jkZy0ZInt5KSkJN6ue3f18/VUTKEc+YgwFy+6ZxmuYhlbB/Brd3Aw39ejR/Np9evzWElxvjqKKSws5Ik18n1YVsb327lzPGSkSxfvxFaKdQ4IkI4Hiim0jeaYwv/97384dOgQzp49i7lz58JkMuGtt97Cf/7zH9SiYCG/Ri4KAaBPH/6+fr1tUShiCrOzHVfFJ24MUlKAwYOl73PmAH//TYJQK56M0SwvBy5f5p89GVPoLuEr8go9JQoZ8w9RaBlbl5YG3HUX0K+f/ZhVR9nH8jZivr4yFrQQhdWrS6KVYgpt4/Qwd5GRkYiKikJUVBSqVauGoKAgczYw4X8wVvHpundv/r52rbJwtZzoaD4sFmOUVUpIiAsxwB8cfCX70p/wZLmT3FxpGZ4Uhe4SvuJaJi9P605RmJ+vfCj2dVEYHa2sK/r99/brijpKNAGkBB5fK2BvmVwDkKXQHppF4TPPPIMOHTogOjoa06ZNQ3FxMaZOnYrz589j79697ugj4QHkg4OLG0KPHrzG119/8RM7MJA/7ckJCAD+TUCnWoWEGbnVRC4QCfV4styJ2F+Rkfwhz1Oi0F3C19PuY0sRKD/+fQXGlLUotdQVtWUpDArirmeAb1dfLGBvzWWup6Wwso3zrjmm8I033kDNmjUxffp0DB06FM2aNXNHvwgPIy7+AQHSaAYbN/InQXERLSsDmjVTxpoA3BKUleXfcYW+Ev9SWZDfFJ25QdL+4IgYzXvv5SJQoHeMpuWN01OiUAjf4cO50J06lbuMMzO5IFy5kq+n1n3vaVFoeYz7oqUwP1968K9RgxesBtS57m3FFAJ8u+blccOCu2JEXcHSZQ7oZylMS+Mi+PhxaZplPKa/odlSuHfvXjz33HPYuXMnunbtiri4ONx5551477338Oeff7qjj4QHEBdRk4lbB4ULoGdPxy4Af69V6EvxL5UFVyyFtD+UpKQok3Y++kj/GE3LG6cn6xQK4fv77/rV+SNRWBFxHoaH85cW170tSyGgrFXoiwXsrbmP9bAU+pqbXC80i8JWrVph0qRJSEtLw8WLF7FmzRqEh4dj0qRJSLR1JBA+jzzJREusCeDforCyntjepKREKSa0iELaH9aRi4xGjfS3mnrLUihISQFWrZK+G42uCV9vuY9DQpTffQlL4a/FdW8rphBQFgX3xQL2luMeA65bCn3RTa4XTiWa7N27F/PmzcPQoUPRo0cPfP7552jVqhWeeOIJvftHeAhx8a9WTfsYtv5alqYyn9jexFIEqhWFtD9sc+GC9FlkCeuJpTXFG4H48nUsKnKtmoG3LIU338zffVEUWgp/eczqsGH2Y1bVWgp9cSxod1gKK/M475pFYVRUFG677TZ8+eWXuOmmm/DZZ5/h8uXL+O233/DGG2+4o4+EB5C7j7W6APzVUliZT2xv4mzQPe0P6zCm3KYWw7jrgqU1xRtjH589q/zu7Hpaq6QAeMZSKELs//mH98OXsBZbJ1z3Bw7Yd93bE4VyS6G95KghQ7wzFrS1RBNXH3p80U2uF5oTTT7//HN07doVVcVWJSoFcvex3AXQoUPFtpYuAH8VhZX5xPYmliJQraWQ9od1rl5V1oDzhKVQiMKCAp6cEKT5TqEdS1F4+bJzbsarVyVrsqcthWL8htJSfk2VL9/bWLOYAVz4DR3Kr/W//cYfvl5+WSnc7CWaWI5/LITmmDHK5KigIL4MTydgWBPDwlIoqm5oPb613iP9Cc2WwuTkZLMgPH36NM6cOaN7pwjPI3+y1uoCEKLw3Dkpu80f8MX4l8qAuAjHxPB3taKQ9od15G5VwD2i0JalEPCcC9lS7Du7nuJaFhKirKPnCVFYp45UvcHXXMjWYusE8nJjMTEVLXlqYwoFKSl8VCwAeOYZ4MMPuVDPyPC8pd+e+xhwzoXsi25yvdAsCsvLy/HSSy/BZDKhXr16qFu3LqpVq4aXX34Z5ZZbh/Ab5JZCLbEmAL+IBAXxk/78eW+tgXYq84ntTSytJvn5QHGx4//R/rCOpSh0h/vY8sYZHCwJKk+5kK1ZCp1B/oBrMEjTPeE+jo4GatZUTvMVbFkKBdWr83dr211tTKGAMeDECf75vvuA++8HHnyQf588ueL57U6siWGjUUoKckYUerKGqKfRLAqfe+45LFy4EK+99hr27t2LPXv2YObMmViwYAGef/55d/SR8ACWQ9ypjTUB+IEfH88/+1MB68p8YnsTcfNp3Fi6Kau5wdP+sI6luPCEpRDwfFyh3pZCS9etJyyFNWv6rii0Flsnx1lRaM1SeOkSd+MDQN26/P2ll/h9ZM8e4NNPtfXdWeSVECzX29W4QnGP3LhRv1JKvoBmUfjpp5/iww8/xMMPP4yWLVuiVatWeOSRR/DBBx/gk08+cUMXCU9g7UKakgIcOcIP+q++4u+2ykT4a1yhOLG3batcJ7Y3ETfI2FhpmDG1LmSxPzZsoP0h8IT72JoVydOiUFgKhdvRH0WhP1gKrbmPAfuiUEtMISAVc65VS/pPTAzwwgv887PPembcYbEuBkPF40GPWoUpKdy7IfjmG/8f512zKLx8+TKaCr+QjKZNm+KyO65WhEewtBQKAgN55fmRI/m7LSuNv4pCgJ/Ao0dL30eM8P8T25vIXWlCZGipVZiSIt1Yg4LsP4zcCAhRKGI09XYfWw5/JvCkKGRMEoUiochfRGFJibRMXxaFjiyFYt/rYSkUorBBA2XbiRO5ByE7m4eDuBshhKtXr3jv0qvskvzadtNN/u/JcKp49cKFCytMX7hwIVq1aqVLpwjPY0sUqsVfaxUK5BdCxnzjxPbXMTXlVhNxo9E61J24yZaW8uw+X9gf3kKIQvEsrvezd16edGx5SxTm50ui4j//4e/+IgqFKAgI4JZxIbp8bfxjVyyF9hJN7FkK5VY0gMfxvfkm/zx3Li8x5U7sCWE9LIWMKfezrz0IOIPmQgOzZ8/GoEGDsH79enTs2BEGgwHbtm3DqVOnsHr1anf0kfAAti6kavFnSyGgPJlPnvRePwT+PKamPL5K3IC0WApLS5VP73l51i0UNwri2GzSBPjlF/1FodhfERHK7ezJAtbCSmgySdcSfxGFYv8Ia5QvWgrl4kVrTCFjjsc+BpSWQiH2LEUhAAweDPTqxUNEnn4a+PZbVavgFPaEsBCFrhzf8vGkgYqhHv6IZktht27dcPjwYdx+++3Izc3F5cuXkZKSgr/++gtdbrS0wEqEq5ZCfxeF8qc9kTXnLfx9qDf5zccZ97G4qdv6fqNhaSmUW/b0wJY1xZOWQpFkUquWfYuVGtSIQj0LS1uKLV8UhVevSiPEOLIUWp6rQhAC2mMKLd3HAI/vmzePW1aXLQM2b3bYfaexJ4TFQ48rlkJ/GPNaK06VJI2Pj8err76qd18ILyIf5s4ZKpMozM7m7hJvWKcsh3oTI3uIod6GDeNDvQ0d6rsuVWvuYy2i0DJmzpOjavgiQhSKIdQALnxs3dy1Ysua4klRKCyF8fGui0Jx/NgShWVlXCCJkiSuIreMy999SSCIPoaGStvBErHdc3P5NhLXF0ei0F5MoTVLIcAfcB98EHj/fV6iZs4cfpzXqsVLTul1bbNXm1EP9/ENKwr379+veoYtW7Z0ujOEdygvl0zorloKz5zh87McpszXsTy5T5+Wirl6EjHU25Iltod6S0ri7bp393z/HHHtmnRzcDam0FIMkKWQv9euzQsjX73Kt5FeotAXLIV6ikJxvIjMd4FcDF27pp8olCdWAc6JwrIyfk6fO6e/MAKU+1heu1GOfHvJHzrko+kEB1f8n6WlkDHHohDgJWo++4xXFujdW5quZ5iMGkuhK+5jy+taZXAfqxKFrVu3hsFgAHNgczcYDCjzl2h4wsyVK5I7xVlRGBfHRUtpKS9g7U+jTly7Jl3Q4uP5DerECe+IQn8f6k1cJENCuIAhS6FrlJdL4iImhgumq1dtZyA7Iy58wVLoCfdxcDDfFmVl/HzXawg6Vy2FnogfdpRkAvDtExnJ7wfyhw555rE1QWlpKbx4kW9fg0FKQLTGli38P4MGAc89x69tmZm8eP3w4fqUoCJLoXZU2XOysrJw7NgxZGVl2X0dO3bM3f0l3IC46BuNzrtMg4K4MASAjz7yz2zZkBBJdHkr2cTfh3qTW00MBudiCslSKCFceQAXG/YEU1oaf5Dp0QMYNYq/N27sOAbVVy2F+flSHJwWbIlCg8E9ySa2LIXXrztejqfihx0lmQislaWxV44GqGgpFOK2dm3r2cqAMkzm++95eEyVKlKYTHIyD5Nx9R7iKUuh2AY3jCisV6+e6hfhf4iLqLNWQoBfvMR8nn9e/Q3JF5BfOMQh7K1kE38f6s3SaqKHpfBGFoXCHWUy8YcW4eKzFIWuiAtfsxTKxZwz+95eJQVrSRGuYik8qlSRXNP2RIJl/LC7hBFg32Imx9pDh73MY6CipdBe5rFAhMk8+6ztMJmsLNfHSbYnCvW0FIoksBtGFAJA165dkSs7Q3/44Qdcl0eWEn6Lq5nH4obUs6f/Z8sKUegtS6F8qLchQ/xvqDfLi7AeMYU3svvYsnC1uGnLhbOr4sLXLIWBgZKgc8aFbE8UusNSaPkgZDCocyF7ShjJ++jIUmhNFNqrUQjYthTaE4WeCpOxJ4b1tBQ2a8bfK0NMoWpRuHXrVhTLRrW/++67cc5XA5sITbiSeewpN4A7kV8wxTid3ixLk5LCY3HWrPG/od5sicKcnIqWT1uQpVDCliiU37RdFRe2BIOnRKF8NBMxhrqzcYXl5favZ55wHwPqRKEn44cdjWYisFaWxpH72NJSaK8cjcBTYTKeshQ2b87f8/IAmUzyS5zOEXWUdEL4D664jz35tOsu5Bd1b7uPAeDoUW6pFEVRw8L8Z6g3W6KwvFy9uBNCQPz3RrYUypNMAOvuY1fFhS1rirgeuLt4tXw0EyECbNXMc8TVq9LDh7cshfLP9kShJ+OH1SSaAPYthVpjCu1ZCj0RJlNaKl1z3G0plA9v52sj2WjFzwqHEO7AFfexv2fLAsqLurAUnjql3rKlNytW8Hex7QoLga5dfddlLMdSFIaESE/kai+WwlLYsCF/J0uhJDKsuY9dFRe2rCny4r7uPBfko5kI0easpVBsF1tJc3qLQlsjhagRhZ6MH9ZqKXR3TKE8TGbYMPeEyYh1MBgqlicC9LUUxsRIwtPf4wo1icI1a9bghx9+wA8//IDy8nJs2LDB/F289ObMmTO4++67UaNGDYSHh6N169bYvXu3+XfGGGbMmIH4+HiEhYWhe/fu+OOPPxTzKCoqwsSJExEdHY2IiAgMGTIEpy2qLOfk5CA1NRUmkwkmkwmpqamKGEoAOHnyJAYPHoyIiAhER0dj0qRJCpe6v+KK+9jfs2UB5UW9dm1u4Swu5qV1vIGIwRwzhr8zBhQUeLYPzo67bM2VpjXZRNzYhfvpRrYUqnEfuyIuGHNsKWTMtRunI4QolF8jnBWFtmoUCvQWhVevSqLJmii09yAkF0ZDh7o3ftgTlsLCQn6dEF4We+5jgHs9li0DDhxwT5iMOK6rVePVMSzR01IYHS3tc3+PK9Q0oskYcZf6l/Hjxyu+612nMCcnB506dUKPHj3w008/ISYmBkePHkU1mXqZPXs25s6di08++QQ333wzXnnlFfTp0wd//fUXIv99FJg8eTJ+/PFHLF26FDVq1MCUKVOQnJyM3bt3I/DfM27UqFE4ffo00tPTAQAPPvggUlNT8eOPPwIAysrKMGjQINSsWRNbt27FpUuXMGbMGDDGsGDBAt3W2Ru44j6W35DkI3AA/pEtCyhP7OBgHtd0+jR34XpazJ47x28KADByJHe/i7GAxZOtu3Glbpo1V1qNGnxeakWhuCGJmwpZCu27j4W4GD6ci4mpU6Wab7NmcXGxbJl1cXHliu3hz0JDuaW3uJgLc8vrg14Fl4UXQcQTAq6LQlsPuHqLQnlJkogIaboQiI6sRkIYjR3L95MgIUHf+GF3JprIi4KfOMHbBwRIAxrYIyWFC+K33uLXnDp1eJiMnkLY1jqL6+n16/waa0042qOsTNpO0dH8HP3jjxvIUlheXu7wpXfh6tdffx116tTB4sWLcdttt6F+/fro1asXGjVqBIBbCefPn4/nnnsOKSkpSExMxKeffopr167hq6++AgDk5eXho48+wptvvonevXujTZs2+OKLL3DgwAGsX78eAPDnn38iPT0dH374ITp27IiOHTvigw8+wMqVK/HXX38BANauXYuDBw/iiy++QJs2bdC7d2+8+eab+OCDD5Bv51GjqKgI+fn5ipev4Yr72BNuAHdjad3yZlzh99/z9/btudXSkxmggOt106xdiLXWKiRLoYRlTKE19zEgiYvdu7VZXcQ+CQuzPvyZrePP2ZqI1rBMMgH8RxRas4wD2gpY3367JCjFiCFz5+onCO1Zgy1xpU4hABw8yN8TEqyPfmKNwECgVy9pWXrcK4SnA+D9sCZN5A/ZzljCc3Mly3yNGo73ubPeF0/j0zGFP/zwA9q1a4f//ve/iImJQZs2bfDBBx+Yf8/KykJ2djb69u1rnmY0GtGtWzds27YNALB7926UlJQo2sTHxyMxMdHcJiMjAyaTCe3btze36dChA0wmk6JNYmIi4mVXrn79+qGoqEjhzrZk1qxZZpe0yWRCHXsl3r2Eq+MeixvS77/7X7YsUFHIeLMsjbip3n47f9fDxaEWPeqmWROFWsvSiBuSiEkiS2HFmEJrYiklBVi4UPreoYPj5CRH1hRrolDvgsvyGoUCfxGF1izj8u9qROHp03y89cBAfo4BSiu9qxQUWHdxW8MZ93FgoFSXUYhCR65jS0S/Ll+WRtdyFvHA8sILUp+sPbAYjVK/nRGFYt+bTFx42tvnej5EuRufFoXHjh3De++9h5tuuglr1qzBQw89hEmTJuGzzz4DAGRnZwMAYmNjFf+LjY01/5adnY2QkBBEWQSZWLaJEY/iMmJiYhRtLJcTFRWFkJAQcxtrTJ06FXl5eebXqVOntGwCj6BH8eqUFOBfoyoAbvHyh2xZoOKF3VtlaXJyeJYx4B1R6Gomua2gey0xhdevSzchcWNxd6KDL2PPfWzt5ml5KXJkdXFkQbIUhe4ouOzPlkJbolqLKNyxg7+3bCkllx05ok//AGkfG41KF7c1rGV9O0o0ASRroRCF9pJMrCGOv7Iy1zwDWh9YXLm+Wu57WzGFnhq1Ri80etE9S3l5Odq1a4eZM2cCANq0aYM//vgD7733Hu655x5zO4PFgIyMsQrTLLFsY629M20sMRqNMNoKxvARXLUUCkJD+Q3i6lVet8mXXcYCa0LG0+5jEZv1zTc8tqV5c+Dmm/lvnhSFrmaS5+VJYkAuMrS4j4VbNCBAGjeVMb7+eo1V6y+UlkrbzNJ9XFzMBbSly1cILECdZVarpVA8OCxZYvvBISmJt+ve3fHy5X3WYim0Fc/oj+7j7dv5e/v20njrR4/q0z9AmWTi4LaoCE8oL+f71FFMIcC3a16e86IwNJTP49o1fsy7WjNXHt8uHliGDeMPLEOHSvemyEi+fVyxFIp9L85R+T53pk/exqcthbVq1UJzURXyX5o1a4aT//r14v4dbNfSUnfhwgWzVS8uLg7FxcXIsQjCsWxz3kqq6cWLFxVtLJeTk5ODkpKSChZEf0MPS6FAWDIsY558FWtCRlgKPeE+lrsV3nuPTzt3Tnp69KQodDWTXFwMq1RRWhW0WArFcRMVxa0P4kZ0I7qQxfYyGKRtWKWKFBBvTTDJRaGa7a3VUuiOElTWEk2sxbYJbLnivv2WZ7KK/lqzVnrafZyX53j8ZmEp7NAB+Ddc3i2WQkeuY0C6fjMm7XNH7mNAshT++Sd/1yoKAeeGxJTjjKfDHZZCuSj0xzq+uopCvQtad+rUyZzoITh8+LB5jOUGDRogLi4O69atM/9eXFyMzZs3IykpCQDQtm1bBAcHK9qcO3cOmZmZ5jYdO3ZEXl4edu7caW6zY8cO5OXlKdpkZmYqRnFZu3YtjEYj2rZtq+t6expXh7mT42+i0JqQ8ZSl0JZboXNnya3gSVHoat00WzdILTGFQgSI40hYDG7EZBPhhqpRQ7IiyGuuWRNMZ85In3NzpQLotlBrKRTHn94lqKyNZgLYthTaOmeio7lAXL6ct1uyxHrMlmVNPVexZSmMipJEgL3jvqSEJwcBSkvhqVOS29ZV1JajAZQuZrHt1YhCsV2vXuXvWmMK5f1ztvizMw8srtQqVCMK/bGOr2ZROGvWLKvTy8rKMGrUKJc7JOfxxx/H9u3bMXPmTBw5cgRfffUVFi1ahEcffRQAd+dOnjwZM2fOxIoVK5CZmYmxY8ciPDzc3BeTyYT7778fU6ZMwYYNG7B3717cfffdaNGiBXr37g2AWx/79++PcePGYfv27di+fTvGjRuH5ORkNGnSBADQt29fNG/eHKmpqdi7dy82bNiAJ598EuPGjUNVcef2U/RyHwP+JwqtCRlhKczNdZ8YUxubJS5anhCFrtZNsyUwnLEUClEgRMmNaCm0jCcU2MpABpSWQsYcn4eOBIO4tIlrhN4Fl62NZgJI65ibK1n8bJ0zZ89yYdW/v+OYLU9ZCgMC1BUzzszk628y8ZCRmBguysrL9Us2UVuORmApyLXEFAq8YSl05oHF3TGF/ljHV7MonD9/PhYtWqSYVlZWhrvuugv79u3Tq18AgFtvvRUrVqzAkiVLkJiYiJdffhnz58/H6NGjzW2efvppTJ48GY888gjatWuHM2fOYO3ateYahQAwb948DBs2DCNGjECnTp0QHh6OH3/80VyjEAC+/PJLtGjRAn379kXfvn3RsmVLfP755+bfAwMDsWrVKoSGhqJTp04YMWIEhg0bhjlz5ui6zp6mpES6QN6IlkJrF8zISGk93OVCVutWEBcrT1nKUlKAzz8H0tO1Z5LbuvloiSkkS6GEI1HoyH0MON7mjlyLlu5j+YPDkCGul6CyNpoJYN2Nae2c0Tr2uqcSTQB1cYUinvC22/g6GQz6xxWqLUcjsDy+tFgKAb7va9fW1kdAe+kqS5x5YLFlKVRTPsZWTGFurhQy4MlRa/RCc6LJ6tWr0bt3b1SrVg0jRoxASUkJ7rzzThw6dAgbReqkjiQnJyNZ5OlbwWAwYMaMGZgxY4bNNqGhoViwYIHdItPVq1fHF198YbcvdevWxUp5hdFKgPxmq4fB09msQW9h66Jerx4XtidP2jb9u4Jat4K4GHmyvGVcnNLteN99wKJFjm/0aiyFjNkPdidLoYRljUKBLfdxYaF0Q61enf/uyBXnyFJorSRNSgrw/PP8RrdqlTS9QQPtJaisJZkAvMRHZCS/WV++zNfH2jmjNfHFU4kmgDpRKOIJZdXQ0KgRL++llyjUaim0tNipSTSRWwrr1tVeCNracrUiL+I+dCh/eHBUxN2apVBt8X7L7Vq9Oj/mysv5b7Vq2e/Tq68Cq1fbLizvLTRbCtu2bYsVK1Zg3Lhx+P7773HHHXfgr7/+wsaNG82JH4T/IC728gB2V/A3S6Gti7q7y9KodSuIU8qTotAy6DkqSt1Fy5EoLC6WYo5sIU80AchSCFR0TdpyHwvRFBoqWZv0thQKoqOVDw4PPeRcCSprSSYCywdMa+eM1pgtT7mP5dPUiMIOHaRpeiebaEk0AVy3FDrjOgZcF4WAVDN35051ng5LS6GW8jGW1zt5yIDchSz69Ouvyj6tWcO3W0CAbxW0dirRpHv37vj8888xfPhwHD9+HJs3b/b7DNwbFT0zjwH/E4X2LIWA+9zHat0Kbdrwad4QhaIkjNp9aUtgh4dLVgZHF3xxIxI3JiEKb0RLoVb3sTxhQ+wDd1gKASnLVBT/LS52ztphLclEYLme1s4ZrTFbeorC0lLlMGeWOBr/ODcXOHSIf77tNmm63u5jLYkmgHOiUG4p9KYoBLgIe/BB/rlHD1771dYDi7AUXrmivQantXuHrQeBlBSgZ0/+OTUVWLeOu9iLinhNWl8qaK1KFKakpFR4ffLJJ6hZsyaqVauGBx980Dyd8C/0zDwG/FcUWj7pu9tSqHZ4QCGKPCUKS0qkOKfBg/m7WkFma1saDOrjhSwthZ4e5s+XsCUKbbmPReaxXBTa296lpdLN6++/rVspHInCPn2U37VibTQTgaU4sZYI1bo1X99XX1UXs6WnKBT9MhikvspxNP6xKHbRsKHynPE1S6GaRBO5pdCZzGPA9exjOWLbDRzIwwZsPbDIE/m0lo+xJgqt1Sq07NOdd/LlnTypLjnK06gShfJh2uSvfv36oVGjRopphH+hZ+YxULliCgH3lqVRMzygJ0vSAMDevfyGGRXF+wKoF/j2YpfUXvBtJZqQpVDClvtYWN1q13ZsdRG1/kRA/MiR1q0UtkShsHAJO8DBg84NT6bFUiiWt2wZsHkzPz6jovg81GbM6ykKxbEcFWU99MaR+9haPCEgWQqzsvRxJ+plKVQbU+ispdDVRBM5opKdGATAFnL3sZZQhJIS6ZqkxlLImCQKGzTQlhzlaVRFkS1evNjd/SC8BLmP+butmEJ3F7BOSQFuuokPcRURwW9iYnQGoGKdOHcjnoI7d1aWBVGDGlGo1lJomWhyI1oKxY3FVkyhs+5jETeVnAwsXSoFvs+cyafLY6+sbf/cXGk4vcGDuRUlL4/fLK2JO3vYSjSxt54pKcBLL/GHqSefBAYN4uv51FPSgwxgPfFFT1FoL8kEUC8K5fGEAJCQwBNtiov5uMjiAdVZXC1Jo8Z9LP8tJ4cLGq3hBHq5jxkDDh/mn/+tKGcT+UO3PBTBcp+I6QBvJ7cSy0fQtTXU3fnzfAzqgAC+T/UeFUhPfHpEE8L93OjuY1sXdnEhPnvW8YgEriIuMAkJFV0dlnXi3M3Wrfy9c2ftVjo9RCFZCiVccR/b2t5a46bkDyXCEihcxbVr85ugsGw540LWkmgiYEyKt7v/fn7ODB/OLTEbNwJffWU7jkwuCl0da8Fekol8uqUoLCvj/fvlF/69XTvl74GBkgvW1bjCa9ckUeeumMK0NODDD6Xvjz3mXGycXqLw7FkuwOTb0RZyS6GW8jFi31evrrxe29rnwkpYt660fr5a0NopUbhs2TKMGDECHTp0wC233KJ4Ef6F3u5jfxOFtoRMTAx3l5SXK0eJcAe2skwB5ZOszgMGVYAxSRR26aJtX5aWSu2siUKtMYU3ekmawkLJOuyK+9jSUqg1bkocf+Xl/EYLSK7jZs2U72LcW7XYGs1EYEsUXrjAs9gNBuVNPzCQC8SRI23Hkclj34TYcRZHFjhrAkG47Xv2lDJeR42qKKD0SjYRfRQlftRgKc7sxRQKq3NSkuuxcWK516+7NuKMsBI2bCglQtlCfn3VUrzf3n0DsC0Kb7rJ9wtaaxaFb7/9Nu69917ExMRg7969uO2221CjRg0cO3YMAwYMcEcfCTfiLvfxlSvut7C5ijwuxNqIBCL71t3D3dmqRwdIFy3GpJuyuzh0iF/sQkOBtm2V5WAsn5wtkY/Tay3oXk1MoXwEDk+VpFFTpNYbiGMiKKjiA5sW97GlCHemhIsQV2IfCItg06b8XQxPr9VSaGs0E4Gt9RRCqU4d+3Fu1pDHvrnqQrbl3heI6Zcu8fPHVrmTli0rCii9kk3kSSb26oPKURtTqLVwuCOqVpViM12xFqqNJwQqlqRJSeFjaK9da7+kja3kHUeWwsaNfb+gtWZR+O6772LRokVYuHAhQkJC8PTTT2PdunWYNGkS8m7EwB8/R29LoXw+vm7dsRUXInB3WRqBLTchwG9i4qbs7rhCYSVs354/YYt9yZjjZdtypwjUuIZEWQgxH8C9lkJhtenRw7dKQgBKwWF5MxfHal6e8oYrF4W2trdWK4XBUDGuUIg/Vy2FtkYzEdgShfIbrFaCgiTrkaui0JGlUOwDUcxYi9teD0thWRmwYQP/bDSqF2fy7V5ebtt9rNXq7Aj5A6UrGchCFDqKJwSsJ/K1asXjOeXrtH+//cLVAlsxhfJjVm3lCW8VtNYsCk+ePImkf6N5w8LCcOVfiZ2amoolS5bo2zvC7egdUxgUJJ1ovu5CFjdeW0LG3WVpBPbcxwaD5zKQxcVbPKGGhko3AkeizNENUo37WNz8jUbJoiO3FOrpPtdSpNYb2HtQkD/AiP2Sny8VBre0FMqtEc5YKSxFoaX72FlLob0kE8CxpVBY07SiV7KJo0STkBBp26WnaxNQrloKxQPPU0/x78ePq3/gEcdXeTk/L2yJQq1WZzXokYEs3MdaLIXXr0vF2OVDD4rrz7Fjyv856z4WYl9k0R84oH04UXejWRTGxcXh0r97rF69etj+7xbMysoCc3fQE6E7eruPAf+JK3QkZIT7+Oef3etatOc+BjwvCjt3lqap3ZdqrSb2LvaW8YSAdFwWF7seAybQmmzhDeyJQnl8mBBMcqtbRITSSiV34GiJmxLIRWFhoXSDFO5j8X7hgnoLT1kZP68A/gBgbVu7w1II6CcKHSWayH8TQlatgBKi8OhR7Q9Drj7whIVJD2WXL9uOKXRHbJweySZaLIXyOEvhQhaisGNHaR5ingJHlsKcHCl8Sl6ORn7MpqSoS47yNJpFYc+ePfHjjz8CAO6//348/vjj6NOnD+68807cfvvtuneQcC96u48B50ShN2K77AmZtDTgvff4540b3etatCcAAPeXpSkr43E0x49zy6R8dAW12b9qRaE90WAZTwjwi7Zwn+oVnaK328tZ7B3zjo4Jywxky4SNkBDphme5zYWVYsMGdVYKuSj8+28uNE0maQjGiAgp1EKNtVBYsWbO5N/37rV+bslFoVwYiRusty2Fakq9CJEgRLZaAdWgAT/ur161P0yeJXo98Ihtf+mSbVHojtg4V0VhcTE/dwF1lkKjUQonsBSFHTpoF4XVq0vXK7EOly7xc8dg4MkvctQkR3kazaJw0aJFeO655wAADz30ED755BM0a9YML774It4Td1HCb9DbfQxoF4Xeiu2y9aQvnrTbt/eMa9Ge+xhwb1kase1HjODfGQNuuUVaR09aCi2HuAO4SNM7rtAdbi+tODrmHSUxWGYgy8vRCOxt85QUSTTOnGnfSiEXhXLXsTzWUa0LWYsVSxx7ZWXSDRuQrG7ethQ62kfy32rW5AJK7cgrRqPkqdDiQtbrgUccX/JzwDLRxB2xca6KwqNH+fasUkW9hVLuibl2jde/BJwThYGBFcc/FvsvIcF+rUdfQbMoDAgIQJCsfPuIESPw9ttvY9KkSQhxlP9N+BzucB9rGdXEm7Fd1k5svTPq1OAt97Gaba/WUujoBim2cUGBZHmwxJqlENC/gLW3S0Ko2e6OLIWW55i8HI3AnnW2pETaZ6LWn62bt3z7W2YeC9Qkm2i1Ylm6MQF+HArB4E+WwkuXgNdf50JpyBB1AkpLsomwOi9fzr+7+sAjji95OS5rgkbv2DhXRaG8aLXabGt5BvKePTy2MD6ei3KtohCoGFfoariDp3GqTuGWLVtw9913o2PHjjjz71Hz+eefY6tIXyT8Asa86z72dmyXtUBxPV2LalzipaXSBdCRpVBPUah224tlu+o+NpmkG56tC741SyGgfwFrb5aEULvdz5/n7Z11HwP2g/bPnePnf3Cw45Eu5OELlpnHAjWWQmfOLUvxKwRSbCzfbs6ghygsKJDK6djbfvKRZcT1cN06dQJKbbKJ3Oq8cCGf5uoDjxBn4rgyGPixYg09Y+NcHf9YSzkagfz6KncdGwxKUSgPYbB3vbMsS1PpReHy5cvRr18/hIWFYe/evSj697H/ypUrmCmCRAi/oLBQCob1hvvY27Fd1k5svVyLal3iog8Gg+0RB9whCtVue5Hc4ar7WE25CU9ZCu0lWwwd6t6SEGq3uxA/jiyFzrqPRftatSr2wxJ5+IJl5rFAjaXQmXNLHtsG6HOD1UMUimPYaLQvTsU++PVX4N+oK8yerU5AyZNNbGFpdc7N5ceAWje1LSzdx6Gh9i1vesXGuZp9rHZ4OzlyS6FcFAL8ODMY+LVXPKgB6kShsPb//bc0L39Asyh85ZVX8P777+ODDz5AsOzRISkpCXv27NG1c4R7EZaXgADnn7qtoVYUeju2y1pMoR6uRS0ucbm10taF1B2iUO22F7hqKQQcu4Ysh7gTuGOoO+H2srTabN7s3pIQare72BaOYgrtuY/tjX8sRKG8vS2EKM/JkSwxttzHp0/bPk6dObfEMSPW09UkE8B1UVhWxkvMAFxQ2CrsnpbGHy4A4Lff+HFvNPIEHTUCSogIW5ZCa1ZnkwlYsABYtUp9drk1xPEljiutRcKdxVX3sZ6WQoCL4fr1lfMuKpJiXMlSCOCvv/5C165dK0yvWrUqcn29WjGhQJ5kojb+Qg1qYwq9HdtlTci46lrU6hJ3lGQCuCf7WO22FxmmrloK5b/ZuuBbK0kDuK+A9YABUnzj88/z94ICXorCXajd7raGuBOocR/bu8FaE5G2ENv/wAHuMg0JqTimbFSUdKwIa6IlzpxbttzH3rIUCg/AQw/x7//8Y90DIB4Mb7tNKcz69OFiUE2stCNLoS2rs3jg2bPH+Tg/S1HoqQQJPWMK1SIshX/+yR+WAgP5iE4Cy7hC0bfAQOseNlsxhTfdpL5P3kSzKKxVqxaOWHl02bp1Kxpa5lsTPo07kkwA9ZZCbw/3Yy2m0NWMOq0ucUdJJoB7LIVqt70YzlxPS6Et97EjS6He2dfiZmsyAS++yG+c5eXAJ5/ouxw5arZ7/fq8tAagzn1cXm4/plAvS+GBA/z95pul4cjkiLhCWy5kZ2okWopCb7qP1XoA7CWrff+9+lhpIQr/+Qf46KOKccn2rM4pKcAff/DPEyZoj/PzR1GYmys9ZGsRYOL6unYtf2/VSjnCjqUolF/rrBlT5JbCy5elY9df5JFmUTh+/Hg89thj2LFjBwwGA86ePYsvv/wSTz75JB555BF39JFwE+4oRwOoF4XeHu7HlpCxlVG3b5/jJ22tLnFHWaaAe0rSqL1Bi4u0vX15/bo0LrM9i6ejC76nLYUi1uemm/jFfdw4/v3DDx2P9ews9rb7kCF8+pQpvG1wMLBrl+PCzpcuSbHB1lyv9mIKtYhCsU0sXccCNckm4tzauVOdFcuWpdDT7mMtHgC9YqXXrZNq6D3wQMW4ZEdWZ7Ef7rhDe5yf2O7iodXTojA3VxphRC1CtMXHK4tSO0K03b+fvwvXscCeKLSGPKZQHK/x8byepz+gWRQ+/fTTGDZsGHr06IGrV6+ia9eueOCBBzB+/HhMmDDBHX0k3IQ7Mo8BbXUKxU1i1y7lTWLPHvfGdl27Zj97UJ5RJ6wSr7ziuD9aXeJq3MfuKkmTkgJ88w2wZo3tG7SaeD4RgB0YCOzebdsColYUespSaOnWGTGCC6Bjx4B589xXSF0c8z//rNzua9bwDEfhyi4pAXr2tO6elLuPhTUnJkaZIWrPMuuMKBRYJplYTnc0BnJKCvDoo/xz1672rVhyUVhQIK2rpy2FWoSeHrHSwirZt69tq6Q7PS1iu4uMW0/FFMofCNWUNJOjZXg7OeL6KtBLFF686H/xhICTJWleffVV/PPPP9i5cye2b9+Oixcv4uWXX9a7b4Sb8bb7WJCSImXmCV56yb3D/YgTWz7ygyUio27wYP59xw7H8xUXarXZf95yHwtatuTiIyQE+OKLijdoR/syLU0aFq+szLaIARzHFNoqSeNuS6G4YIeH8xtCUBC3+rizkPrAgZJ1b+5cvt3vuIN/79zZcYKS3H1sLfMYsL+93SEKtYyBfOoUf+/Rw74VSy4KxfB61apVPEa04Iwo1CL0XI2VVlsrFdDujleL5fb1lKUwKEh6CNTqQtYyvJ0cy+u/LVGYlcXDOhyJQnlMYaUWhdeuXcOjjz6K2rVrIyYmBg888ADq16+P2267DVX0TF0lPIa7LIXiglJQIMVGOeLECeV3y2KheuMoLkSOSDzIyHA838BAXgxYbZFaLe5jd4hC4TJp2RIYPbriDdqepVBYM9q0UVd43J7lqrRUWj9vWQrT0nhcUf/+7i+kvnMnF4VxccDkyfwhYccO9UXT5WLJlsCTW2blNdYYc00U2nIfC7F49Cjw6af2razifBfD49lCvp56JJkAzolCLULPVQueFqukVne8WizLY3lyJA5n4wqdtRTK5UtkZMUkqvh43qasjB+Dai2Fly9LSVeVUhROnz4dn3zyCQYNGoS77roL69atw8MPP+zOvhFuxl0xhfJsZrXWQmEFEE9ltjIY9cJakokthCj8/Xc+Fqk1RKHqL78EPv+cT9u61fGFWg/3sSvjRovkgRYtrP8uBNn168qRSJwZ+UXM66+/KvZTLjpt1Sl0Z0yhp0ey+eUX/t6lCz9XhBB47jl1cWhiGxUXS+LW0lIobq4lJcph4vLyJEGkRhRaPvPbusFt3SrFwI0da9/K6owo1KMcDeCcKNQi9FyNldbqfk5JkSyHSUmuFY8WeMtSCDgvCp2xFKalSeEaAN9PN92kPGYNBklo/vWXuiE9xf1PlLiplKIwLS0NH330ERYtWoS3334bq1atwnfffYcydw03Qbgdd7mP5ePVahWFgwbxdzUuKFdQky0rSEjgQx6Vl/PYR0vkharvvps/sQYH8wt/aipvM3iw9Qu1GvexvCSN3OJjuWxn3J1CFLZsaXvZ4gInF2Vag+nT0oCJE/nno0cr9lMcJ5GRFTNb3WEpvHaN19QDeD88PZKNmI+wFmkVAlWqSNtJWKksRWF4uDRMnPwGK6yEUVHS77ZIS+OWYDktW1ovwfLf/9qPgRMwBpw8yT/7i6VQq9BzZfg3Z9zP2dn8PSnJteLRgrAwZRyhr4vC8nLpIU+tpdBW2SBrx6w8rtDRvSMwUDpuxX2tUorCU6dOoYvM3n3bbbchKCgIZ0XkrweYNWsWDAYDJk+ebJ7GGMOMGTMQHx+PsLAwdO/eHX+IXPx/KSoqwsSJExEdHY2IiAgMGTIEp8Ud4V9ycnKQmpoKk8kEk8mE1NTUCnUXT548icGDByMiIgLR0dGYNGkSitX6R30Qd7mPAW1xhYxJJ8/Agfz92DHbY+TqgRZRCNh2IdsqU9GvH/Dgg5KVr7jY+oVai/u4rExKjrG3bC3uTuE+tmUpDAiwPtSdFhEj+tmune1+2oonBNxTvFoen1ajhmdHsiktBbZt45/FJVWrEJCPECN+s2b1s1aWxlYMorV1cbUEi63anIWFfB3q1LHfB7ko1GtkCGdL0mgVes4O/+aM+9laSSJXkB9fgOcSTQDnhro7fZpfG4OCKrp/raH1mNUiCoGK13NXrdsehakkICCAXbhwQTGtSpUq7NixY2pn4RI7d+5k9evXZy1btmSPPfaYefprr73GIiMj2fLly9mBAwfYnXfeyWrVqsXy8/PNbR566CFWu3Zttm7dOrZnzx7Wo0cP1qpVK1ZaWmpu079/f5aYmMi2bdvGtm3bxhITE1lycrL599LSUpaYmMh69OjB9uzZw9atW8fi4+PZhAkTNK1HXl4eA8Dy8vKc3xg6MXgwYwBjH3yg/7xvuYXPe9Uqx23/+Ye3BRgrKGCsalX++Y8/9O+XYNo0voxHH1XXfv583n7QIGlaaSlj9evz7VhWpmxfVsanx8fz/918c8V5FhVJ633pku1ll5czFhDA2509q37ZDRrwdra4epUxg4HP1+LUVlC/Pm+TkSFN27ix4jQ527bx39evV9fPlSt5+9atK87r/HlpO9lbHy2kpfH5tWunbX02brQ9z+XL+fYcPJjP58oV/j54MJ++fDlv99tvfF4mk7Q+zuzPJk2k7QLwbWhJ69b8t59+kqZ9/DGf1rev7XXR0h+t227HDv49Pt728gVXr0rrV7Mmf//lF8f/s8fatXw+LVs69/+sLP7/wEDGNmzQ75iUIz+Wtm1jLD+fv1seS4KuXXmfli7Vrw//+Y+07e+5R7/5OmLyZL7Mp59W1760lLE5c/h/6tRRtz+0HrNffcW/JyUx1qYN/7x6te35i/0BMBYTo2493IkW3aFaFBoMBjZw4EB2++23m19BQUGsb9++imnu4MqVK+ymm25i69atY926dTOLwvLychYXF8dee+01c9vCwkJmMpnY+++/zxhjLDc3lwUHB7OlsrPlzJkzLCAggKWnpzPGGDt48CADwLZv325uk5GRwQCwQ4cOMcYYW716NQsICGBnzpwxt1myZAkzGo2aBJ4vicIuXfhB+803+s+7d28+788/d9x21y7etlYt/v222/j3Zcv075dg/Hi+jOnT1bUXN7Lq1blIY0z9hQVgzGiseHM9fZr/FhRU8TdLqlXjbf89HHURMWKdYmPtL9uasFArGtavV9fP557j7z16VGxTWChtx8uX7fdVLa+/zuc3cqS29bF1w9Hy/3nz+LIHDlS20yoEOnZUisI9eyr2q1cv/tsXX0jTXn6ZT7v3XtvbR8vxJW6YV65Yb5ufz3//6iv+/Ztv+PeOHW0vX1BezlhIiHI9xYORs2zdyufTuLFz/9++nf+/bl3X+uGI5culBzLxatCg4nHAGF8XPQSzHHF/ABh78EH95usIcXzef7/jtta2Uf361reRHK3H7O7d/Ht0NBeeAGM7d9qe/x13SP1JSnK8Hu5Gi+5Q7T4eM2YMYmJizO5Vk8mEu+++G/Hx8Ypp7uDRRx/FoEGD0Lt3b8X0rKwsZGdno2/fvuZpRqMR3bp1w7Z//TO7d+9GSUmJok18fDwSExPNbTIyMmAymdC+fXtzmw4dOsBkMinaJCYmIl5mn+/Xrx+Kioqwe/dum30vKipCfn6+4uUr+Ir7WLjyRMV3kcXozmQTre7j1q15XM3ly1KWm1qXo8HAXeHyAdUByXUcHV0xjs0Sy2QTPdydjlzHAmv7Uh5jZS/LWqyjo34Kl6Y197HRKMU06eVCtsw89uRINpbxhAKt7knLbWXNdWjPfWwvycSdJVjUJpkAFd2Y4eHScHrO4urYx3q7am0h3M/ievjSS9bdz4y5p0/y7e6LMYWuhM9oPWZFnOI//0jnj5rRmwApc9lfCHLchLN48WJ39sMmS5cuxZ49e7DLSoR/9r/RtbGxsYrpsbGxOPHvlSc7OxshISGIskhpjI2NNf8/OzsbMVaCumJiYhRtLJcTFRWFkJAQcxtrzJo1Cy+++KKj1fQK7so+BlwThaLkhTuTTbSKwpAQHhO3dSu/8DRporywWNa2EtMBnll84QIXDfLgcDVJJgJLUah22fbGjXaUZCKwFdMnRMxddwGrVknTGzSQRMymTer6KZJZLDOP5X3IztYv2cRafJpYnylTuBgTyNfHFmpF1NmztkWh6MPQoVIRZFHixJoYlW+roCDrGezWbrBqxj3WcnzJY+C++04piq3FwAlRWL++7eXLqV5dSqRo1Mj1cdr9RRQCfL//5z/8WmgyWT8O8vOlddFznHi5sPFGTKE9UWg5wow45kRM4LBhPCZw6FDr20zrMVulCj9fzpyR4jxt3TvS0vj1QrB2Lb/OvPmme2vv6oVTxas9xalTp/DYY4/hiy++QKidRxWDxVWCMVZhmiWWbay1d6aNJVOnTkVeXp75dUpUbfUB3JV9DOgjCn3JUghUTDZRW6haBCkfP65soybJRGApCvUYzcAVS6Ggf3+pCPOHH1YMplfbT7F+tooS612WxtYg9cI68/jj/HuHDuqSA9RaHkpL+cOA0cgfMqwhiqaPHKmusLNYvjVrs7OWQneWYNFiKbRcTz2yOEXGtT+IQkBKxhEZ27b6U62acsxeV/FlS6Gr1QKc8QzIS92EhFQs1QRI1sukJPfXOnUXPi0Kd+/ejQsXLqBt27YICgpCUFAQNm/ejLfffhtBQUFmy52lpe7ChQvm3+Li4lBcXIwcizuaZZvzlr49ABcvXlS0sVxOTk4OSkpKKlgQ5RiNRlStWlXx8gXKyyWB4Q73seWYpfYQolBkjcndx+4ag1bcJO3VB7REWI9E5mhgIPDUU45dqELsZmUp56emRqFAXpZGLNuV0QwYc91SCEg3pIgI4L77KooYtRdfYQG0ZykE9LEUysvRWIpC0ec+ffjn69fVlfdQ+4Agssc7dHDd+iK/adsSKNZusGpEoTtLsIiHI2dEoR5ZnEI4FRdrH18X8J4otGVPcFd/vC0K7WUf6xE+ozVcQy4KrQ164Olap+7Cp0Vhr169cODAAezbt8/8ateuHUaPHo19+/ahYcOGiIuLw7p168z/KS4uxubNm5H07x28bdu2CA4OVrQ5d+4cMjMzzW06duyIvLw87Ny509xmx44dyMvLU7TJzMzEOdlRtnbtWhiNRrRt29at28EdXL0q1bzztqVQiCUhnho25O6wggLpBqYn5eWuWQr/+EMSJ+KQ2bzZ9oVFuMksLYWuuI8B6aKWkaFc9u7djt2d2dlcKAQE2B62TCD2pTVRKC9vYstgbuviu3On1E97JWkAfS2Fot6dveHS6tbl77asM5YEBgIvvGD9AWHIEElE/forb+/MeLSWyAW0LYFnaSksKZFiWx0Vrna2BIuoR9mpk3Urq1ZLofyhtazM9Zuq3JomL/GkFk+LQnEs3iiiUByzly9XrMsqcHUoQYGWskHyB8jQ0IrHoZ61Tr2JT4vCyMhIJCYmKl4RERGoUaMGEhMTzTULZ86ciRUrViAzMxNjx45FeHg4Ro0aBQAwmUy4//77MWXKFGzYsAF79+7F3XffjRYtWpgTV5o1a4b+/ftj3Lhx2L59O7Zv345x48YhOTkZTf59POjbty+aN2+O1NRU7N27Fxs2bMCTTz6JcePG+Yz1TwvCchAYyKuu6/30olYUlpZKNwkhCoODpRPQHXGFly9L6/vHH+rXPTaWW3sY44Lm8GFp9JJ162xfWGyJQmfcx5aWspQUXg9PzqRJjt2dwnV8002OCxiLm7K1fakmPk30U1x8k5P5tP79pX6KeXvCUih3HdsSssI6k5NjexQbS0R51J9/VoqoNWuAe+/lN9mffuJt5DGLziIXS+Xl1o9jS0thdjY/foOD1VmotdbaCwzklkSxLEsra26u9GCjRhSmpQE//CB9nzfP9bGo5QLHH0ThjWoplA99aYke4TMCNeEaaWnA7NnS92PHKh6HetU69TY+LQrV8PTTT2Py5Ml45JFH0K5dO5w5cwZr165FpGyU63nz5mHYsGEYMWIEOnXqhPDwcPz4448IlO39L7/8Ei1atEDfvn3Rt29ftGzZEp+LOz6AwMBArFq1CqGhoejUqRNGjBiBYcOGYc6cOR5dXz1IS5NOlrIy7aNgqEGtKDx1ivfBaFQ+1bkrrtByhIZ+/bStuwi6/9//gEcf5Reg5GQ+3daFxZEoVHNztjfUnbjIiJuHzOBtE7WuY0Cd+1jNDUlcfCdN4t83bJAsAZ60FMqHt7NF1arSMu2FAYvRS959F3j7bT7t228lETV5Mr+5ffEFP8+Exe7hh10739LSgGeekb5/953141hYXYQoFJZdWzGI1lAb4ygQN79jxyrG7YkHwBo1eMiBPUR8VufO+sZnBQS4FlfoLVF49qx1d7cnRKEnE03CwqyPxCNHbfUDV0d2AaTj8NZb7R+HelkvvY6by+MQFni7TqHaAruuIuo6OSpQK+rYNW2qnP7ss3z6ww/r0x/GXF/35ct5nSp5TaygIMbeeMP+/0Sx25AQZQ279u359O++c9z3F1/kbcePr/ibqFcnir7WqiXVUrTFPffwti+95HjZorB027YVf3v8cf7bU085no/g2jVet1Fed1EU+d692/p/nnqK//7EE+qXY4sHHuDzeuEF++0SE3m7f8uZVsBajbTwcGV9TVGTLzlZv/NNy3Esjr3QUP592TL+vUMH7cvVgjhPfvtNOf377/n0W26x/389irPbo0YN3g95gXxRiPurr/i7tXlfu6Z/zUxHlJUxFhzMl3niRMXf//tf/tvbb+u7XFE/FuDXY3cU6bZFQoLjWoCMMfbpp/warKaWozNoOQ7dfcy6gluKVxP64E1R6MmD1vJmZItFi3i7AQOU0z/7jE/v3t31vjDm+rrbuhEnJzu+uZeU8NEPAF6wWtCgAZ+2bZvj/ouCx6LYspy6dflvP/8sXSCt3TzkiILUagSpKPbbqFHF3+68k/82b57j+cgRRZUXLODfQ0P596ws6+1ffZX/ft992pZjje7d1RVWHziQt7M24o+a40Ecc8nJ+p1vWo9jUYQX4KMFvfUW/3zHHeqX6QxiG3/6qXL622/z6Y7GOdCjOLs9RAHiXbv4d7VFkI8ela5rjh689ERcK7Zurfhbp078t2+/1W95y5dL20hLUWi9aNWqYsF8a/z4I2+XkGBfzDuL1uNQawF6T+GW4tWE/+PJQFjhPi4s5C9bWCaZCPR2H7uy7pY1seRZZd9/7zirLChIcgHJXcgi0cSZ7GNBebnkPmrcmBfZBiqO0SyntBQ4eJB/dlSOBrAfCqB2HF1LRB369et5XJc4RmzFFIr11yOmUO0YurZKgag9HjZt4vv7uef0O9+0HsdVqvDyGYCy8K6jGFBX+c9/+LulK01tkom747PktQq1FEGWu2pdrZeoBXtxhXq7j8X2aN3ae2VVrJVSsoY4zvv1Ux/eoAWtx6HW5CxfhEThDYQnA2EjI6Wblr24QssahQIhCrOz9Ykjc2Xd9RDTlnGF165JCQzOZh8DPC6xtJTfoOLipJjH7dttz+vwYV6OIyJCXQFheUyhZTag2kQTS0TJl40bJXEcEMCPG0d9cIVr1yRhZC+mELCdgaz2eBCFu/U837QexwaDMtnEU6JQ9EMk3wjUikJ3x2cJUXjlim2Bb62MiLPHu6vYekDRezQTew88niyronZUk19+4e96ZPNbw5njUGtylq9BovAGwpOBsAEB9rNWBbZEYWSkdOHVw1royrrrIaYtRaEQQkajbSEkx1b2sbjJx8byjFLLAtvWEEkmLVqoSzYQ1rvycn4TFbhyQ2rdmgey5+fziv9iObb6o1eiiShHExWlHLHBGrZKgag9HgR6nm/OHMdyq4uvWAodPYzomV1qDSEKd+/W9sDn6SQTgS1LYU4OH0IT0Oe67StlVdSIwmvXgN9+45+7dnVPP5w9DrUmZ/kSJApvINx9obVETQayLVEISPXz9ChL48q66yGmbYnCmjXVuaFsWQotb/LCUrh3r3SzsEQuCtUQGiq5IOWiLCdHcvtqvUkGBgK9evHP33zD3225jgH9StKodR0Dtq0zao+H7t31P9+cOY69YSkUovDkSeUxq9ZS6OpY1I4QolDUbFT7wOctUWjrAUX0p0YNfTKEfaWsihpRuGMH95LUrq1+yEStuPs49EVIFN5AeDKNH3A8qkl+vnTSi9FM5OgZV+jKuushpi1FoZYahYB6UdigAZ9ncTGwZ0/F+ZSV8Tp6AC/7oMYNZDBYL2Dt6g1JxBWK/tgqRwPYthSKkjBLlvB3R+tja3g7a8hvxHK3udrjoXt3/W8oztyk5JZCT7k/q1eXxLOIX71+XTru1dQodGd8lhCFov6e2gc+X7MU6t0fXymronaoO4Cfj+6M76wMcYKa8EDiCyHD2yVpGOPZlO5M4xf07Ws9A1Gwbx//PTra+u/vvMN/HzxYvz6NH+/curuaVbZ5szKDd/Fi/r1fP3X9Pn1aKoEjz3p87jk+/ZFHpGlDhvBpc+dWXAc1GZbWaNKEt9+0SZqWns6ntWihbh0sOXZM2Rd72+LkSd4mOFhaf2fWR5SjmT7dcf+Kivi+BRg7f175mzgeBg1yfDxY66er55uWeY4fL5XzkWciu5s+ffiyPvyQf//zT/69ShVtmbtqSsVoZeRI3pc339SWId6jB//fl1+63gct2LpWar2OOMJXyqqI6hO9e9tu07s3b/POO+7ti8Adx6GnoOxjwi6NG3Oze3y8ewNhHbmP7bmOAfcUsC4r4+s+cqS2dXf1aVFYCk+e5H3QMsQdIFkKS0uV2dzW3IHW4gq1ZFhaw1qih6tWpwYNlBbikhLblj5hKSwp4RYnZ9dHi/s4JIQn7wAVXcgpKXyEgzVrHB8P7gg81zJPYXX5/Xf+Xq2acqg3d2EZVyh3HWux7LgjPkusf2Eht6yq9SB421L4zz/KUVj07o+vuEsdZR+XlkrXN3clmVjiz3GCWgjydgcIz3P4MH9v3Zof4O5CL1F45Ajw2Wfcndeli2sn465d/P2//wVuv13bf1NSgKFDudvi3DnuQlHbn/h4XpqmpIT/V6v7uEoVfiNljLuQRcV/a6LQMgPZMqNQBJCLjMJhw3hG4dChttfF2r50thyNIC1NGVrw889crL35ZkVxU6UK73d5Of+PM+tTViZlw+bn8++O9l3dunx/nToFtGun/C02lt+cWrTgAfj2jgdxQ9ETtfMUN1ghCj0laCwzkLWOeexO5CVpRLzs2rXAqlVSmwYNKgp8b4nCqCheLaCgADh9Wgp/cEd/xAPwlCnK4RitbQ934ch9vHcv3xZRUdLDB6EPZCm8AfnrL/5+883uXY6rojAjg2fUMgaMGeP6cHzXrklWi1tvdW4ezj4tWtYq1FKjEOCC0FpcoTVReOutXCidOsV/1yOjUG9LobD0demiztIXECCt/4YN2tcnLQ1o1EiyPDz6qLpjyVayCSCJnU6dfNt6IG6wYt09VU7FnqXQ2whRWFAAvPwy/zx5MvDWW/xzTExFy+uVK1L2vaeHKjMYrMcVukukerusiiNRKErRdO6sfrhGQh20OW9AhKWwSRP3LsdRookQhdaSTNLSuDWvXz/9Cqju3cutQ3Fxnq8zBiiTTbRaCgHrZWlOn+bv8vWJiJAyi+fM4SIKcC2j0JrAd/aGJLdcfv+9+lpoQpgKcaF2fYQAbdlS+7FkK+sTkEShr1sqhKVQ4Kljv3lz/n7uHL8G+JIoFAkmX33FvQdhYfyYGzWKT79wQemmBaTjKTJSXRkpvbH2gOJOy6U33aVCFF67Zn3wA3mSCaEvJApvQHzFUmhrNBNnRYMjhOv41ls9OxqBQIjfrCzXRKGwFF69Kn2W3+jT0qQs5/nzgVde4Z9dySi0Zil0tryJs5ZLEVeoJWPU1WK8aiyFvi4KLesxekoUVq0qCcA//vAdUZiWBixcyD+L89BoBLZu5QJaiGhxnRR4y3Us8KSl0NuYTJIItbQWlpfzfQWQKHQHJApvMEpKJAudN0VhebltUeiuAqpCFN52m7b/6YXcUqjVfQxUFIVClFWpIv1mzS27dStv88orzpfU0dNS6GwtNCFM69Th2/LVVx2vj6vHkq1RTQoKpOPX1nr4Ct6yFAKSYJaLQnfVlFODOD86dlRajbt0kazGtuqjeluAWVqty8ulc6SyiUKDQfI0yZNNysp4fPmlSzwWtFUr7/SvMkOi8AYjK4ufWOHh7r852BOFZ8/yWnpBQUBCgvI3R6JBXLSXL1dXm06wcyd/dzae0FXEzVAvS6Glpc6WhbVTJ2DxYmD1aufrU1paCktL+RCEgPYbkrO10EQf8vN5MsqqVY7Xx9VivLbcx0Iw1KypTdh7A29ZCgFp++7dKx2v3rIUqvVAiAQ3XxOFlpbCf/6RhriMjfVOn9yJeJgRlsK0NB4HfO+9/HtxMQ9R8MRYzDcSJApvMOSuY3e7UG3FFJaVcUEHcFFk2Q97oiEtTbI+LFyoPvkkJ0cqXGyZReophCjMzJTiZPSwFApRbc8qNnw4t6ypKaFiDcvi1RcucEtFYKA2YQs4XwxcXsC6cWOegGS5Prt3K9fH1WK84kZ87hy/CQn8xXUMKF1xgHcshWvW8H0bEuI9AaPWaiyykX1VFAqrtehPTAxPyKtsiPvH998DL73kWkktQj0kCm8wRJKJu13HgNJSKEaEEE97kyfz72fPVhR1tkSDcP3ccov2C4MYI7NhQ8dj3roLIQqF6zg8nCeFqEWIIluWQkdWsQkTuGVh2jTtGYWW41iLG1JcnPYAdGdrocmHups5k38eNoyvh6jNeP/9yvURx5IaV7M1atbk8WbycZ4B/xKFBoPymPeGpVC4juvW9V62qFqrsUgi8TVRaGm19nZ/3ElamlRC6e23eYb4oEHOxQUT2iBReIPhqcxjQBKFxcXaCg5bEw25ucDEifzC4EzyiTzJxFvExyuf6LVa2By5j9VaxXr10p5RaOk+dnUMXWeKgYub9Y8/Al9/zT9Pm8bXY+xY/n3zZuV/xLGkxtVsjYAAyRIrjyv0J1EISFaXgAA+7JynbqBNmyo9Ad5MMlF7frRpw9+PHOEx2AJX63K6irAUXrnCH4wqqygU94nu3fl5uno1f5h97jl9Y8wJ65AovMHwVOYxwEWbuNn+84+2LFBL0RAVxS+Czl4YRDyht5JMAL4txNM+4LwoFCVpLIWZHmM028IyPlSPG5KWWmhpacD77/PP4uZdpQpw9Cj/3LMnf8/I4GUs5Awbxts66zq3lmziT6IwLU2ZnNCrl2v1PrUQHq5MJAsJ8Z5FR+35kZLCj5fSUinkBPC+CAsPl8T9qVPe7487sBb3KR5EXSmpRaiHROENhifdxwaDJCacKTgsFw0TJvBpzl4YfMFSCCgzL7UmKFhaCi1rFLpziCphKSwo4NYTvawmamqh2coY7d5dsjA3asQteiUlwLZtyv/v2sX/ExYGrFun3XVu6ba7elVyh/q6KBTbrkcP78RipaUB589L33/6yXOC1BK150dQUMVkE3n4gDdFmDyu0Bf6ozfW4j5djQsmtEGi8AYiP18STZ4QhYD0ZOuofIctUSdEwx138O/OXBjOnuWvgAAej+hN5KJQb/cx4PoYzbYQ8YwAf3J3ddxjtdjLGP3+e8nCXF4uWQt//lk5DzF0Wb9+QO/e2l3nlgH+Bw/y99hY78WnqsFd9T7VYukG9IXkALXnh6hwIPZ1bq6UHOZN8SF/QKmM5WisxX260wNCVIRE4Q3E33/z95gYyfLjboSlUGT0Ofu058qFQVgJmzfXltjhDuTu48JCbTdkuSiUl4SxFGbuGKIqKEiK6ZOLQnffkLTUGezRg0/fuFHZTojCQYOc64OlpdBfXMfuqvepBm8LUnuoOT8saxWK4z0qShp33BvIy9JURkuhNaug3MI7dKi+HhCiIiQKbyA86ToWCFEYH+/a054918+QITz5YOxY4JtvKtYu9HbRakFaGvDOO9L3JUu0udLk2cfnz0slYayV+HDHEFXyuEJXE03UoqXOoBCFwl0spu/Zwz8PGOBcHywthf4iCl2t0egK3hSkanB0ftgShd4WYNZEYWVym9p6+E9Jka7tenpAiIqQKLyBEEkmnsg8FgghkZcniTpnCyjbcv389BPP6p0+nY9dKmoXfvstv4h8/z3/f9u27l5b2whXWvv2zrvS5JZCIcqcKQnjLPIMZE/dJLXEE9Wrx5MaysoksfHTT/z91ludr49nmWjiL6LQm7FY3hSkeiDGbT50iIsTXxOFWVnOF4/3Zew9/H/2GY/nffFF/TwgREVIFN5AeNNSmJPDsx7DwpzPAgUqun5eeIFftPv1U15AoqMlgShufq++6p04JlfH3xVYE4WWo8G4E7Evz52TCpK721KoNWzAMq5QuI4HDnS+D+JGnJfHt72/iEJvxmL5e3JAw4Y85OX6dWVShydrPFpDPKDs3cv3YUCA9thkX8de3Ofy5fyar6cHhFBCovAGwhuiUD6qycKFvFzITTfxbGRnn/aE62fECP70OHiwMm7p7Fk+skX//kqh2LatdwLc9XKlyUvSeMp9K0dYCkXwfViYMgHFHWjNqJbHFRYX82xjwPl4QoDHUsrXXcQW+roodGc2uiP8PTkgKIhfpwDuQvY1S+HVq/zdk54CT+KOuGhCJcyHmTlzJmvXrh2rUqUKq1mzJhs6dCg7dOiQok15eTmbPn06q1WrFgsNDWXdunVjmZmZijaFhYVswoQJrEaNGiw8PJwNHjyYnTp1StHm8uXL7O6772ZVq1ZlVatWZXfffTfLyclRtDlx4gRLTk5m4eHhrEaNGmzixImsqKhI0zrl5eUxACwvL0/T/1ylvJyxKlUYAxg7eNBzy33jDb7MW25hLDKSf/7qK33mvXEjn19GhjSttJSx+vUZGzyYsbIyZfuyMj69QQPezlN89RXv55Ur1n/Pz1e3XfLyeDuAscmT+fvEifr31xZjxvBlDhrE3xs18tyyly/n+1WsP8D34/LlynZnz/LfDAbGvv2Wf46NrXgsaKVlSz6v6dP5e61ars3Pk6jddu5YrsHAz7lt2/hxvm0b/24wuH/5rjJ8ON9Wb77JWEoK/7xwoXf7VFzMt53Yj+3aebc/hH+gRXf4tKVw8+bNePTRR7F9+3asW7cOpaWl6Nu3LwoKCsxtZs+ejblz52LhwoXYtWsX4uLi0KdPH1wRkeYAJk+ejBUrVmDp0qXYunUrrl69iuTkZJTJ/HWjRo3Cvn37kJ6ejvT0dOzbtw+pqanm38vKyjBo0CAUFBRg69atWLp0KZYvX44pU6Z4ZmOooKyMx9AtWVIx2SI7mz9dBgQoi8m6k7Q0YPZs/nnPHm6lCA3Vb5xOa3FLvhjgrpcrrUoV6bMIgPekpVC4j4X71JPLVms5qFWLx8wyxkfAAXhogatDqwkLjYhR9HUroRxvWV3cVR7JU8iTTXzFUhgczK2DAm/3h6iEeECk6saFCxcYALZ582bGGLcSxsXFsddee83cprCwkJlMJvb+++8zxhjLzc1lwcHBbOnSpeY2Z86cYQEBASw9PZ0xxtjBgwcZALZ9+3Zzm4yMDAbAbJlcvXo1CwgIYGfOnDG3WbJkCTMajZqsfu6yFFqzBtSvLz2Nb9rEpzVsqOti7fbHYGAsOZlb8q5c4e/JyfpZCaxZCvWyyumJntZLYW2tU4e/f/65e/psjRkzlMfXXXd5btlqWb6cMZNJ2c/YWNePt4cfliyQAGOPPaZHb28MSkv5ufrVV/zdk1Z6VxDXkk6dGKtbl3+W3SK8Rvv20rH90EPe7g3hD1QaS6Elef+O71X930C1rKwsZGdno2/fvuY2RqMR3bp1w7Z/hzXYvXs3SkpKFG3i4+ORmJhobpORkQGTyYT27dub23To0AEmk0nRJjExEfGyR7N+/fqhqKgIu3fvttnnoqIi5OfnK156o2ZMYU9mHqstOOxqjTJrcUu+GOCuZ2yXiOETcW3esBQKvB10b4k4D7p0UW7j225zPZZUBPgzxt/9yVLobdxRHskTyAtY+1KhaHlyWVGR94YNJConfiMKGWN44okn0LlzZyT+6y/M/jcnP9ai1kRsbKz5t+zsbISEhCDK4o5m2SbGSgpXTEyMoo3lcqKiohASEmJuY41Zs2bBZDKZX3WEH0on1Ga2HjrE23siycRTLlxrYqt1a37hfvVV3wpw18uVJpJNBN5INBH4wg1S4O5iyZanLYnCyk+TJnyozpwcPnwioHTdeoO0NJ6kJ1i82HvDBhKVE78RhRMmTMD+/fuxZMmSCr8ZDAbFd8ZYhWmWWLax1t6ZNpZMnToVeXl55tcpYeLRCbUCLCODT/OEKPRkjTJLsRUVxeN/fLH6vR6xXd4Uhb5sKXT3g4jlunqy1ifhHcLC+AOkICZGv3hoZxCW8M6dfWfYQKLy4ReicOLEifjhhx+wceNGJMhs53H/PrZZWuouXLhgturFxcWhuLgYOTk5dtucl4/a/i8XL15UtLFcTk5ODkpKSipYEOUYjUZUrVpV8dITtQLs+HH+7ombmadduNbE1rff8uX4WoC7q640+eFjMnl22D5fthS680EkLQ245x7ltHbt6CZ8IyBcyIB3j3dfHjaQqFz4tChkjGHChAlIS0vDzz//jAbyxzYADRo0QFxcHNaJYmQAiouLsXnzZiQlJQEA2rZti+DgYEWbc+fOITMz09ymY8eOyMvLw86dO81tduzYgby8PEWbzMxMnJPdVdauXQuj0Yi2Xhwqw5EA+/13/i40b6NG7u+TN2qUWYqt4cMrZ50ruSj0ZOFqoKKl0JdEobseRIR1pnVrss7ciMgfoo1G74kuX6yqQFRS3Jry4iIPP/wwM5lMbNOmTezcuXPm17Vr18xtXnvtNWYymVhaWho7cOAAGzlyJKtVqxbLz883t3nooYdYQkICW79+PduzZw/r2bMna9WqFSuVpcH179+ftWzZkmVkZLCMjAzWokULlpycbP69tLSUJSYmsl69erE9e/aw9evXs4SEBDZhwgRN66R39rG9zNZvv5VqE1rLSHYn/l6jzFe57z5pX/bt69llnzqlPJZkp6HXcUd9Sl+seUl4juXLGatZ0zvXT0t8saoC4T9o0R0+LQoBWH0tXrzY3EYUr46Li2NGo5F17dqVHThwQDGf69evswkTJrDq1auzsLAwlpyczE6ePKloc+nSJTZ69GgWGRnJIiMj2ejRo60Wrx40aBALCwtj1atXZxMmTGCFhYWa1skdJWmsCbCZM62XhPGkKPNW0dzKjChaDTB2772eXfbVq9Kyo6I8u2w16P0gYq3kkZxt2/jvGze62nPC15AfS966fsqhY5FwBS26w8CYKLJAeIL8/HyYTCbk5eXpGl+YlsZjTkTsYFAQH+bt+++V7obycp5wkZnJ3anuTrgoK+MujXPnuOuuSxf/KUnhi8yYwQeEB4Bp04CXX/bcsktLuQutvJyHBxw54nv70vI8AHiowpw52kMHlizh42dfuaIsHC64coW787/6ioctEJWDsjKe0duiBY/X8+b105f7RPgPWnSHT8cUEuqRJ1tMm8Zv4M895/34E3+tUearyMVJQYHnYpzS0vhYsCJG9Phx3yyFoefoHb5Y85JwP74Yv+fNcayJGwsShZUIIcCaN+ffPVEShvAc8mEDAWDePM8IMzXF0X0JvR5EvJEwRXgfT5bU0oK/DxtI+AckCishZOGofAhh1r69Z4WZ2uLolbEUBllnbkx8+frprXGsiRsHiin0MO6KKZRD8SeVC2/uz02bgB49uBDq0KHi7xkZ3FqxcSO3ylVG9IxTJHwfun4SlQ2KKbzBIQtH5cKbMU6+6krzJGSdubGg6ydxIxPk7Q4Q7kHEn0yZwi05ggYNKP7E3/CmMJO70qxZCm+UUAQRp0jcGND1k7hRIfexh/GE+1gOlYTxf7zpwiVXGnEjQ9dPojKgRXeQKPQwnhaFhP/jbWEmklySk7mrOjGRL2/WLO5KI8sJQRCE70IxhQRRifB2jBOVwiAIgrgxIEuhhyFLIeEs3s6CJVcaQRCE/0HuYx+GRCHhCiTMCIIgCC1o0R2UfUwQfgRlwRIEQRDugmIKCYIgCIIgCBKFBEEQBEEQBIlCgiAIgiAIAhRT6HFEXk9+fr6Xe0IQBEEQRGVH6A01ecUkCj3MlStXAAB16tTxck8IgiAIgrhRuHLlCkwmk902VJLGw5SXl+Ps2bOIjIyEwWDwdnf8lvz8fNSpUwenTp2i0j4+Cu0j34f2ke9D+8j38fV9xBjDlStXEB8fj4AA+1GDZCn0MAEBAUhISPB2NyoNVatW9cmTkJCgfeT70D7yfWgf+T6+vI8cWQgFlGhCEARBEARBkCgkCIIgCIIgSBQSforRaMT06dNhNBq93RXCBrSPfB/aR74P7SPfpzLtI0o0IQiCIAiCIMhSSBAEQRAEQZAoJAiCIAiCIECikCAIgiAIggCJQoIgCIIgCAIkCgkv8ssvv2Dw4MGIj4+HwWDAd999p/j9/PnzGDt2LOLj4xEeHo7+/fvj77//tjovxhgGDBhgdT45OTlITU2FyWSCyWRCamoqcnNz3bNSlQy99lFGRgZ69uyJiIgIVKtWDd27d8f169fNv9M+ch499lF2djZSU1MRFxeHiIgI3HLLLVi2bJmiDe0j55g1axZuvfVWREZGIiYmBsOGDcNff/2laMMYw4wZMxAfH4+wsDB0794df/zxh6JNUVERJk6ciOjoaERERGDIkCE4ffq0og3tI+fQYx9dvnwZEydORJMmTRAeHo66deti0qRJyMvLU8zH1/cRiULCaxQUFKBVq1ZYuHBhhd8YYxg2bBiOHTuG77//Hnv37kW9evXQu3dvFBQUVGg/f/58m8MGjho1Cvv27UN6ejrS09Oxb98+pKam6r4+lRE99lFGRgb69++Pvn37YufOndi1axcmTJigGG6J9pHz6LGPUlNT8ddff+GHH37AgQMHkJKSgjvvvBN79+41t6F95BybN2/Go48+iu3bt2PdunUoLS1F3759Fdt/9uzZmDt3LhYuXIhdu3YhLi4Offr0wZUrV8xtJk+ejBUrVmDp0qXYunUrrl69iuTkZJSVlZnb0D5yDj320dmzZ3H27FnMmTMHBw4cwCeffIL09HTcf//9imX5/D5iBOEDAGArVqwwf//rr78YAJaZmWmeVlpayqpXr84++OADxX/37dvHEhIS2Llz5yrM5+DBgwwA2759u3laRkYGA8AOHTrktvWpjDi7j9q3b8+mTZtmc760j/TD2X0UERHBPvvsM8W8qlevzj788EPGGO0jPblw4QIDwDZv3swYY6y8vJzFxcWx1157zdymsLCQmUwm9v777zPGGMvNzWXBwcFs6dKl5jZnzpxhAQEBLD09nTFG+0hPnNlH1vjmm29YSEgIKykpYYz5xz4iSyHhkxQVFQEAQkNDzdMCAwMREhKCrVu3mqddu3YNI0eOxMKFCxEXF1dhPhkZGTCZTGjfvr15WocOHWAymbBt2zY3rkHlR80+unDhAnbs2IGYmBgkJSUhNjYW3bp1U+xD2kfuQ+151LlzZ3z99de4fPkyysvLsXTpUhQVFaF79+4AaB/piXAnVq9eHQCQlZWF7Oxs9O3b19zGaDSiW7du5m27e/dulJSUKNrEx8cjMTHR3Ib2kX44s49szadq1aoICgoC4B/7iEQh4ZM0bdoU9erVw9SpU5GTk4Pi4mK89tpryM7Oxrlz58ztHn/8cSQlJWHo0KFW55OdnY2YmJgK02NiYpCdne22/t8IqNlHx44dAwDMmDED48aNQ3p6Om655Rb06tXLHNdG+8h9qD2Pvv76a5SWlqJGjRowGo0YP348VqxYgUaNGgGgfaQXjDE88cQT6Ny5MxITEwHAvP1iY2MVbWNjY82/ZWdnIyQkBFFRUXbb0D5yHWf3kSWXLl3Cyy+/jPHjx5un+cM+IlFI+CTBwcFYvnw5Dh8+jOrVqyM8PBybNm3CgAEDEBgYCAD44Ycf8PPPP2P+/Pl252Ut1pAxZjMGkVCHmn1UXl4OABg/fjzuvfdetGnTBvPmzUOTJk3w8ccfm+dF+8g9qNlHADBt2jTk5ORg/fr1+O233/DEE0/gv//9Lw4cOGBuQ/vIdSZMmID9+/djyZIlFX6z3I5qtq1lG9pHrqPHPsrPz8egQYPQvHlzTJ8+3e487M3HG5AoJHyWtm3bYt++fcjNzcW5c+eQnp6OS5cuoUGDBgCAn3/+GUePHkW1atUQFBRkNtHfcccdZrdXXFwczp8/X2HeFy9erPDUR2jH0T6qVasWAKB58+aK/zVr1gwnT54EQPvI3TjaR0ePHsXChQvx8ccfo1evXmjVqhWmT5+Odu3a4Z133gFA+0gPJk6ciB9++AEbN25EQkKCeboIe7G0FF24cMG8bePi4lBcXIycnBy7bWgfuYYr+0hw5coV9O/fH1WqVMGKFSsQHBysmI+v7yMShYTPYzKZULNmTfz999/47bffzK7i//u//8P+/fuxb98+8wsA5s2bh8WLFwMAOnbsiLy8POzcudM8vx07diAvLw9JSUkeX5fKiq19VL9+fcTHx1co73D48GHUq1cPAO0jT2FrH127dg0AFNngAI89FJZe2kfOwxjDhAkTkJaWhp9//tksxgUNGjRAXFwc1q1bZ55WXFyMzZs3m7dt27ZtERwcrGhz7tw5ZGZmmtvQPnIePfYRwC2Effv2RUhICH744QdFLC/gJ/vIO/ktBMHYlStX2N69e9nevXsZADZ37ly2d+9eduLECcYYz9zauHEjO3r0KPvuu+9YvXr1WEpKit15wiL7kjHG+vfvz1q2bMkyMjJYRkYGa9GiBUtOTnbXalUq9NhH8+bNY1WrVmXffvst+/vvv9m0adNYaGgoO3LkiLkN7SPncXUfFRcXs8aNG7MuXbqwHTt2sCNHjrA5c+Ywg8HAVq1aZW5H+8g5Hn74YWYymdimTZvYuXPnzK9r166Z27z22mvMZDKxtLQ0duDAATZy5EhWq1Ytlp+fb27z0EMPsYSEBLZ+/Xq2Z88e1rNnT9aqVStWWlpqbkP7yDn02Ef5+fmsffv2rEWLFuzIkSOK+fjTPiJRSHiNjRs3MgAVXmPGjGGMMfbWW2+xhIQEFhwczOrWrcumTZvGioqK7M7Tmii8dOkSGz16NIuMjGSRkZFs9OjRLCcnxz0rVcnQax/NmjWLJSQksPDwcNaxY0e2ZcsWxe+0j5xHj310+PBhlpKSwmJiYlh4eDhr2bJlhRI1tI+cw9q+AcAWL15sblNeXs6mT5/O4uLimNFoZF27dmUHDhxQzOf69etswoQJrHr16iwsLIwlJyezkydPKtrQPnIOPfaRrfMQAMvKyjK38/V9ZGCMMXdaIgmCIAiCIAjfh2IKCYIgCIIgCBKFBEEQBEEQBIlCgiAIgiAIAiQKCYIgCIIgCJAoJAiCIAiCIECikCAIgiAIggCJQoIgCIIgCAIkCgmCIAiCIAiQKCQIgiAIgiBAopAgCAIA8P777yMyMhKlpaXmaVevXkVwcDC6dOmiaLtlyxYYDAYcPnzY4Xw3bdoEg8GA3NxcvbuMw4cPIzw8HF999ZVienl5OZKSknD77bfrvkyCICovJAoJgiAA9OjRA1evXsVvv/1mnrZlyxbExcVh165duHbtmnn6pk2bEB8fj5tvvtlj/WOMKQQrANx888147bXXMHHiRJw7d848/c0338SRI0fwv//9T/d+lJSU6D5PgiB8AxKFBEEQAJo0aYL4+Hhs2rTJPG3Tpk0YOnQoGjVqhG3btimm9+jRAwDwxRdfoF27doiMjERcXBxGjRqFCxcuAACOHz9ubhcVFQWDwYCxY8cC4CJv9uzZaNiwIcLCwtCqVSssW7ZMsQyDwYA1a9agXbt2MBqN2LJlS4V+T5w4Ea1bt8a4ceMAAIcOHcILL7yARYsWISYmBosXL0azZs0QGhqKpk2b4t1331X8/5lnnsHNN9+M8PBwNGzYEM8//7xC+M2YMQOtW7fGxx9/jIYNG8JoNIIxhmXLlqFFixYICwtDjRo10Lt3bxQUFLiwBwiC8DqMIAiCYIwxNmrUKNa3b1/z91tvvZV9++237OGHH2bPPvssY4yxoqIiFhYWxj788EPGGGMfffQRW716NTt69CjLyMhgHTp0YAMGDGCMMVZaWsqWL1/OALC//vqLnTt3juXm5jLGGHv22WdZ06ZNWXp6Ojt69ChbvHgxMxqNbNOmTYwxxjZu3MgAsJYtW7K1a9eyI0eOsH/++cdqv0+cOMGqVq3KFi1axNq3b8/GjBnDGGNs0aJFrFatWmz58uXs2LFjbPny5ax69ersk08+Mf/35ZdfZr/++ivLyspiP/zwA4uNjWWvv/66+ffp06eziIgI1q9fP7Znzx72+++/s7Nnz7KgoCA2d+5clpWVxfbv38/eeecdduXKFZ32BEEQ3oBEIUEQxL8sWrSIRUREsJKSEpafn8+CgoLY+fPn2dKlS1lSUhJjjLHNmzczAOzo0aNW57Fz504GwCyQhLjLyckxt7l69SoLDQ1l27ZtU/z3/vvvZyNHjlT877vvvlPV948//pgFBASwOnXqmIVnnTp12FdffaVo9/LLL7OOHTvanM/s2bNZ27Ztzd+nT5/OgoOD2YULF8zTdu/ezQCw48ePq+obQRD+QZAXjZQEQRA+RY8ePVBQUIBdu3YhJycHN998M2JiYtCtWzekpqaioKAAmzZtQt26ddGwYUMAwN69ezFjxgzs27cPly9fRnl5OQDg5MmTaN68udXlHDx4EIWFhejTp49ienFxMdq0aaOY1q5dO1V9v/fee/H8889j0qRJMJlMuHjxIk6dOoX777/f7FoGgNLSUphMJvP3ZcuWYf78+Thy5AiuXr2K0tJSVK1aVTHvevXqoWbNmubvrVq1Qq9evdCiRQv069cPffv2xfDhwxEVFaWqrwRB+CYkCgmCIP6lcePGSEhIwMaNG5GTk4Nu3boBAOLi4tCgQQP8+uuv2LhxI3r27AkAKCgoQN++fdG3b1988cUXqFmzJk6ePIl+/fqhuLjY5nKEcFy1ahVq166t+M1oNCq+R0REqO5/UFAQgoKCFMv44IMP0L59e0W7wMBAAMD27dtx11134cUXX0S/fv1gMpmwdOlSvPnmm3b7EBgYiHXr1mHbtm1Yu3YtFixYgOeeew47duxAgwYNVPeXIAjfgkQhQRCEjB49emDTpk3IycnBU089ZZ7erVs3rFmzBtu3b8e9994LgCd1/PPPP3jttddQp04dAFBkLwNASEgIAKCsrMw8rXnz5jAajTh58qRZeOpNbGwsateujWPHjmH06NFW2/z666+oV68ennvuOfO0EydOqJq/wWBAp06d0KlTJ7zwwguoV68eVqxYgSeeeEKX/hME4XlIFBIEQcjo0aMHHn30UZSUlCgEW7du3fDwww+jsLDQnFFct25dhISEYMGCBXjooYeQmZmJl19+WTG/evXqwWAwYOXKlRg4cCDCwsIQGRmJJ598Eo8//jjKy8vRuXNn5OfnY9u2bahSpQrGjBmjy7rMmDEDkyZNQtWqVTFgwAAUFRXht99+Q05ODp544gk0btwYJ0+exNKlS3Hrrbdi1apVWLFihcP57tixAxs2bEDfvn0RExODHTt24OLFi2jWrJku/SYIwkt4O6iRIAjCl8jKymIAWNOmTRXTT506xQCwRo0aKaZ/9dVXrH79+sxoNLKOHTuyH374gQFge/fuNbd56aWXWFxcHDMYDObM4PLycvbWW2+xJk2asODgYFazZk3Wr18/tnnzZsaY9QQVR9SrV4/NmzdPMe3LL79krVu3ZiEhISwqKop17dqVpaWlmX9/6qmnWI0aNViVKlXYnXfeyebNm8dMJpP59+nTp7NWrVop5nnw4EHWr18/VrNmTWY0GtnNN9/MFixYoLqfBEH4JgbGGPOuLCUIgiAIgiC8DRWvJgiCIAiCIEgUEgRBEARBECQKCYIgCIIgCJAoJAiCIAiCIECikCAIgiAIggCJQoIgCIIgCAIkCgmCIAiCIAiQKCQIgiAIgiBAopAgCIIgCIIAiUKCIAiCIAgCJAoJgiAIgiAIAP8PeNFv6eUBoiUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create a new figure for a timeseries plot\n", "plt.figure(figsize=(7,3))\n", "\n", "# Use the plot() function to plot the year on the x-axis, peak flow values on\n", "# the y-axis with an open circle representing each peak flow value.\n", "plt.plot(Skykomish_data['water year'], # our x value\n", " Skykomish_data['peak value (cfs)'], # our y value\n", " linestyle='-', # plot a solid line\n", " color='blue', # make the line color blue\n", " marker='o', # also plot a circle for each data point\n", " markerfacecolor='white', # make the circle face color white\n", " markeredgecolor='blue') # make the circle edge color blue\n", "\n", "# Label the axes and title.\n", "plt.xlabel('Water Years')\n", "plt.ylabel('Peak Flows (cfs)')\n", "plt.title('(Fig. 1) Skykomish River Peak Flow - Timeseries');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## Estimating CDFs from observations\n", "\n", "**Steps to estimate a CDF from observations:**\n", "1. Rank the observed sample data from lowest to highest\n", "2. Apply an \"unbiased quantile estimator\" to the ranked data. (There are many options here, we won't go into detail, but in our class we will use the Cunnane Quantile Estimator. This is recommended for hydrology applications (see [Helsel et al., 2020](https://pubs.er.usgs.gov/publication/tm4A3), Chapter 2, Table 2.2) Check if there are other unbiased quantile estimators used in your specific field.\n", "\n", "**Cunnane Quantile Estimator**: Approximate quantile unbiased\n", "\n", "Where $p_i$ is the calculated probability (estimated quantile) of the $i$th ranked observation, from a sample size of $n$.\n", "\n", "$p_i = \\displaystyle\\frac{i-\\,^2/_5}{n+\\,^1/_5}$\n", "\n", "Some advantages of using quantile plots (from Helsel et al., 2020):\n", "- Arbitrary categories (bins) are not required, as they are with histograms\n", "- All of the data are displayed, unlike a boxplot\n", "- Every point has a distinct position without overlap\n", "\n", "**Note:** In hydrology, you will often see \"Probability of Exceedance\" (important for reporting flood probabilities!). A CDF is the probability of value $\\leq$ given value, as in our example below. Therefore, the probability of exceedance is 1 - CDF.\n", "\n", "Take a look at the documentation for the [scipy.stats.mstats.mquantile()](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html) function. Or see the function I wrote below." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def cunnane_quantile(df, column_name):\n", " '''This function will compute the Cunnane plotting position for the values in a column of a dataframe.\n", " It requres a pandas dataframe, and the column name of interest (a text string) as inputs.\n", " The output is a new dataframe, ranked (sorted) with an extra column with the plotting position.'''\n", " \n", " # Rank all our values\n", " ranked_df = df.sort_values(by=[column_name]).reset_index()\n", " \n", " # Calculate the Cunnane plotting position\n", " ranked_df['cunnane_plotting_position'] = ((ranked_df.index + 1) - (2/5)) / (ranked_df[column_name].count() + (1/5))\n", " \n", " return ranked_df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use the function above to create and plot an empirical CDF with our observations of peak flow from the Skykomish River." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Compute a CDF from our observed data\n", "ranked_df = cunnane_quantile(Skykomish_data,'peak value (cfs)')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " index date of peak water year peak value (cfs) gage_ht (feet) \\\n", "0 23 1951-10-03 1952 13300 9.58 \n", "1 29 1958-01-17 1958 14100 9.81 \n", "2 65 1994-03-02 1994 15700 10.05 \n", "\n", " cunnane_plotting_position \n", "0 0.006579 \n", "1 0.017544 \n", "2 0.028509 \n" ] } ], "source": [ "# Look at a few of these values, see that we have ordered them from lowest to highest.\n", "print(ranked_df[0:3])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAHACAYAAAAbYJnhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABYLElEQVR4nO3deZhbZdnH8e+PUpYCLbuspSCohaooZRWQiiIiL8gi0KJQqPAiUJcXxQUFkVZxFwuIyK4yqAgVAUGWIoJAWwS1UDZZSyn7Xltaer9/PCfMmTTJJDOZJJP5fa4rVyYnJ+c8ZyaTO89zP4siAjMzM+udZZpdADMzs3bggGpmZlYHDqhmZmZ14IBqZmZWBw6oZmZmdeCAamZmVgcOqD2k5J+SDs1tu0lSlLh9Q9L47OeV+6AsQyWdLGm6pJclzZN0uaR3FO33ZUk3VHnMlSSdIul+Sf+V9LSkv0qakNun19ckaZfsGKN6eozekDQiO/+eNbwmJB3bg3N9q+h9MU/SlZLeU7RfU38nuXLk38+LJf1H0k8kDe2Dcz0q6Yc1vmYXlf5/W1x0DZfWu7yNJmm4pHMlPSlpYfb7+rGk1VqgbMdL2qXE9i7/J/X6W+Q+dwq3ZyRdK+n9uX2+Jem5Go+7XPa6LXtatmV7+kLjAGA14OKi7dOArxdtewJ4A9gemN8HZRkOHAGcC5wADAG+Btwh6T0R8US231nA1yXtEhE3dXPMPwDvAyYBs4C1gZ2BPbLztIunSH+X+xp0vpeB3bOfRwDfBq6TNDIiXsi2/yMr038aVKZKCu/nZYGtgVOADYH9m1moIgcDD+cet9XgeklbADcBz5D+vx8B3pX9/HFJO0fE080rIccDp5PKmLc9qax95UPAf4F1gW8C07L/o7k9PN5ywEnAo8DdPTmAA2rPfQ74VUQsKtr+QkTcXuY1z/ZRWR4B3h4R/y1skPQ34HHgcOBkgIh4VdIfgIks/eYn99rNgI8CB0TE73NP/VaS6l/85omIhUC5v1dfWJx7f9wu6VHgNlKQvTgr0yuNKpOkFfPvmxLy7+dbJK0EnCJprYjoq/dzrf4VEbOaXYi+kP2//Rp4Edg+e28A/FXSlcC/gCmkL/gtpcLnYL3MiIjXACTNBB4jfbn6QR+ftyw3+faApE2BHYCqmy9KNY9mzTh/zppUH8n2uVTSTbWUJyJeL/5QzGo7j5Fqlnl/APaUtHqFQ66a3c8rca6K3/6zZuUFkvaSNEPS+SX2uVDSPyoc4yBJb0g6Kns8RNLPsibSBdlxdyt6zU3Z7+6w7Hf5mqRfSVpe0jZKzeGvZfsNz71uqSbfrOx3Snpd0ouS7pD0waJiDpL0HUnPZk1OZ0havtLvpox/Zvcb5s7fpclXqan9dyV+Tz+U9HjhS46kFSR9X9ITWbPgPyXtUfSaRyX9SNI3Jc0BXik+bjfuzO5HZMcbLukSSS9Imp81vb2z6JynSvp39vufI+k3ktapdBJJ6yulG66XNKTGMlYk6UPZ33SBUirjzKL/y8ckfT33+H+zv8fnctuOk/Rk7vEESfdk/8vPZX+zLepQ3J2BLYFJuWAKQEQ8CfwM2E/SBlk5SqZhVNSkLunjkq7L3ruvSLq9xP/Ut7JreV/2/HxJd0naKX9cYA3gJHU2we6SPddtakTSKElXSXo1u/2+u/dGKVkr3LNk78sy59pY0tTsel+V9Celz/KCV7P783PXUvZ4pTig9syuwOt0fhjmSdKy+VupA2QfglcAI0m1yP8j1Xq3rUcBJa0FbArcW/TU34HBwE5LvajT/aTr+6mk3SStUOU5v0mqDe8dEVcA5wCfLPqwWhnYD1gq0GbPjwcuAo6MiLOyzb8EDgMmA/uQmtCvkrRj0cu3Aw4l1cCPJ31rn5K9/jTgU8AmwNkVruHtpC9KNwL/Q/rGeyVQ/AXkOGC97Jg/AP4X+Hy541ZQCO6VmsYuIX0JWilXTgGfBH6X+5JzKTAe+E5W9hnAFVo6JzQO+CBwNHBgjeUdkd3PU/pSdgvwTuAo0u97JeB6SSvmXrN2VqaPA18g/Q1ulDSo1AmyD7GbgYeAPSOiuzTJoKL/ubKfa5I2B64BniO9D08i/T7yX47/Rtf/j52BBSW2/S075s6kdMqvgY+R/p//DgzrptzV2Dm7/2OZ56eSPscr/T+XsjHwJ+DTpN/D34E/S/pA0X5DgAuBX2T7LQQuz33J2YeUxjiX1MS7PSll0a0smN0KrJCVYzywBfCnwpfEaklahfQ/ulQlIHt+eeAG0uftEdm5NibV9Av/2x/K7iflruWpWspBRPhW4430gTyjxPabSPmb4tuy2R8wgJWzfT+ePd4m9/r1gUXATXUo40XA88AaJZ57FJjczevHAq9lZXyD9AF3BKDcPm9dE+kD81Vgl9zzQ0mB+bDctsNJ/5RrZI93yY4xivShvBA4KLf/SGAJcGhu2zKkvO61Rb/7l4BhuW2/y469c27b0dm2IdnjEdnjPbPH+wPPd/O7CeDmom1Tgdu7ed23SB/ky2a3twPXAXcBy+f2e+t3kj1eC1hc9HvZPttndPZ41+zxB4vOeTPw+6K//VPAClW8h24itWgsCyxP+tCeQwrUIuVTnwdWz71mNdIH7DFljjmI9D4v/rs8CvyQ9CXw8ey8y3VTvsLvqfg2qegaLs09vgR4EBiU23ZA9rrts8f/m13DMtnjx0k5wnnZY2V/x2Oyx18C7uzt/2yZazwLeLHC86tmZf9y8f9kif/5H5Y5xjLZ3/ha4Lyi92sAH8pt2zLbtntu23PAt8r8nxxb4W/xK9KX9+Vy2zYD3gQ+XuGaC9c4LCv3hsBvSf8jW+b/13KvOSp7fpPctg1In21fyx6vnB13fE//Xq6h9sw6pDdRKTeSOm+8dYuIxSX225r0Dzq9sCFSE86dJfatiaTPkmpOn4mI50vs8hzpGsqKiA5gI1IAvAR4B+mLRHEnLIAfkwLVRyPX2SlSE1Wh1lQwHriiRLk+B/yUFDQuyW3fmvQB9lYuNyKWZI+La6gzI+Ll3OOHSP8wtxRtg1S7LOXfwDClZund8rXCIn8penwv6R+0O2uQvjQtysryPmDfSLnckiLlKm+ka23yQOA/ETEze/xh0rfzW4taR24ARhcd8oaIWFBFWQH2zcq6gBScHwUOjvQJ9GHSF4JXcud7lfQefuuckj4m6e+SXiZ9qM3JnurSC51U072Z9Pc6MCLeqLKMB9H1f+7MCvtuA1weEW/mtv0hK1fh/fQ30pfB92a15Q2A7wNrKvUv2IL0d/xbtv/dwPuUekDvLGm57gpcTStWlaLoviqSNsje40+Srn0RsBtL/00W0bW/RaHFq5r3enc+DFwOLMn9Hh4hvceK37OlvJSV73FS7fLwiLi7zL7bAP+IiLc6r0XEHFINufhzpMfcKalnVqB8b90Xcx9ylaxD6U5KzwKr9LRgkvYiNXN+JSIuL7PbQtI1VJQFvfNJOYXBpGafwySdGhH55u79SB+i00sc5lzgpqwpFVItZ48S++1HCjDXF21fF3gtlm72exoYImn5XDB6qWifN4BXswCc3wZlrj8i7pe0N/BV4GpgkaTLgc9H1044pc5VTdP4y6QPkkHAe0m1soslfaConMUuAc5UGrLyGqm594Lc82uS3lPFneQgfePPq6VH6I3AV0gfuo9FxItF59yO0s3GNwBI2pqU2rgcOJXUUzVIna6Kf187kJrtzinzJbSce6L6TknrUnT9EfGmpOezcxMR9yoNudiJ1BloVkQ8LunubNvypL//rGz/6yUdRvpS+HngNUm/JtUaXy9TjuK/U7kmzieBVSUNjaIcamZEdl9102TWJH4F6XPmRNL/3eukHufFfS5eyb8vI+KNrDW2qjRQN9Ykvbe+UuK5DUtsK7Yz6XP4OeCJbv5/lvq7Z54mVRzqwgG1Z16gmxpeFeaRmvKKrUWqDdRM0g6kD96zIqJST7dVSddQtYhYJOknpFzmu+iaP96TlGe8SNKniv4Bb5b0ICm3KWAuS9fuIOUqf07Kn3wsOjtZPQWsLGlIUVB9GzC/Us2upyLiKlKOdhipaf6npC8pB9Xh8ItzX7jukPRfUvP8J0nNVuVcTvr97E3qbLZe0f4vkD58P1FFGWqpzVT6gvgC6YP5lBLPFTp47EP6knhgVqtFUrkPsPNJNcOpkj6cb72po6coChpZLncNuv5P3EIKni+Ras3QmVtdAbi16H1+IXBh1ndhX+AnpA5fXy1Tjq2rLO9fs/u9SDnaYntl97dl94XPjuJacn686qaklpGPRcQ1hY1Fee9GeIH0vj6nxHPVjCG9K7JevlV4itSyUOxt1PhZWImbfHvmflJCuzdmAOtI2qawQdL6wFY9OZhSj8IrSR0uPldhv2VIHWEeqLDPKmX+uTbL7ou/6f2b1BljT1LOp9h5pIB6CHBRUXNbwRxSHnAz4NKsRgzp9xTkxj1mHRb2p2tTbt1FxMsRcTHpn37zPjrNr4F7KP0tPV+WF0lfRA7MbrMj4l+5XW4gfcl7LSJmFt/6qOw3kD6k7ilxzvuzfVYEFhWCaebgCsc8ivQ+/rOkd/dBme8A9inqELUvqXKRfz8VgufOdAbUm7NtO9HZ3NtFRDwbEb/Ini/7nqnh7/M3UpPyN7OON2+RtC6pRvzXXFNmoTl9ZG6/bUlfVAoK/9sLc/tsBBR3SKpWta0zxW4g9Z24s8T759EelqWcO4CtJL31uZ193u5A59+9YutVNRxQe+ZWYHj2bbSnribV8n4naaykT5A+SJ4mdcIBQNIHlWap+WC5A0lamxRIXyN1o99G0nbZrfif+p2k5PutFcr2TuA/kiZJ2kNpGMcXSE2+d1MikGW1iT2BT2npGW8uJNWohtO1mbL4GA+TmkO3AX4taZmImA10AKdLOlbS7qS87LsoXTPqFaUhEhcoDd3ZWWlmqE+Smj7rLgs03yHl4HbtZvffkvJcB7B0bfY6UqeS67Lf0xhJe0s6SdJ3617w5MekmtCNksZl79UDlIYQjc2Va7ikn0raVakn+KHlDpjV+g4hBZK/ZDnLeppEaiadmr23jyT1Dbg2Im7L7XczqfbyDjoD6i2kjmTrkwuoSrOUTZG0X/Y7+AKpF3Wv3zPZ++PTpObo2yQdkr0vjyQ1my8LTMi9ZDqppeJn2fV9itTLPd9cfB8p8P5IafjMQaQva0/SM/eRJpjYRdLo4sBfwbdIAfUqSftnrz84+//bpYdlKecCUq71z9l7dD86e3v/AlJzNimHe4CkHbNr6TYf3kVPezMN5BvpQ+R54NNF228i14ut6LnxFPW+I7XdX0NqpnkMOJL0xp6a22eX7HW7VChPYZ9St5uK9v0iaVYZVTjeaqR8yh3Zdc4n/dN8j649Oktd0+6kb74nFR3zFuCWCmUfldv2PlJT27mkZuIhpCbXp7NjzyR1gKr4u6eop1+p87F0L9/tgatITdMLSP9g36NrL9wuvRfLnavEtZbch5RPfYCs13Kp30m2fZXsbxHAO0scZ3nSsKVCZ6x52fvr47l9HqVMb88Sx1vqd1pin/VITbWFv82jpFr3Frl9jicNdXqdlCPfrPh3WFyu7Fr+Qvq/2LCb9/2oWq6B1BJyR/b3fYbUiam4V+wgUrP1A0XbZ5Nm58n3TN2TVNt6Njvm/aSm3rL/Y7XeSF9Gz83el29m130fMKLEvluTWnbmk3qQf6DE73drUvD9L6nX83hS0JlZxfu1+G+3FSm4v07us6rEfqX+Fu8ifUF+ISvLQ6QAt0GF38V4SvRkruJ/fxNSb/xXSZWPK4HNivbZjTRZxoLsHEv9fivdlB3EaiTpNGDTiPh4HY85jBTsTo+Ik+p13KJz3AZcFRGT+uL4Zc65Ounb77ER0U7TFpo1haRJpC8qu0X304hagzig9pDSzCT3A++LiLL5yG6OcRSpefdBUmek/yM1gWwREY/Vq6y5821LqrFsHBEv1fv4Jc63CimP9HlSU+6I6H6Qvpl1I+tHcBmpaXn76MxZWxO5l28PRcScLL+2LhU6+HRjIakzynBS88J04MN9EUwzq5MmSHipj45fbCvS5OqPAYc4mJrVR6Sa0D7NLod15RqqmZlZHbiXr5mZWR24ybeCNddcM0aMGNHsYpiZWQu58847n4uIpYZNOqBWMGLECGbO7Ksx8WZm1h9JKtnPxU2+ZmZmdeCAamZmVgcOqGZmZnXggGpmZlYHDqhmZmZ14IBqZmZWBw6oZmZmdeCAamZmVgcOqGZmZnXggGpmZlYHbRFQJZ0n6RlJs8o8L0k/k/SQpH9Jen+jy2hmZu2tLQIqcAGwe4XnPwZslt2OBH7egDKZmdkA0hYBNSJuBl6osMvewEWR3A6sKmndxpTOzMwGgrYIqFVYH3gi93hOtm0pko6UNFPSzGeffbYhhTMzs77T0QGjRsGgQem+o6NvzjNQAqpKbItSO0bE2RExOiJGr7XWUsvdmZlZP9LRASecAFOmwIIF6f6EE/omqA6U9VDnABvmHm8AzG1SWczMrBsR8MYb8NprS99ef7309lLP33cfXHopjBmTjjtmDJx7LkycCGPH1rfMAyWgXgEcK+kSYFvg5Yh4qsllMjMrq6MDJk+G2bNh5MhUq6p3AKiXN9/sGsRqCXiVnl9mGVh55fK3lVbq/HnNNWHEiKWf33ln2HHHruXdccf0e623tgiokjqAXYA1Jc0BTgIGA0TEWcDVwB7AQ8B84LDmlNTMrHuFZspzz00f/rfcAhMmpOd6E1QjUrNnvQJe4bZwYdfgVhzsim9rr135+cLrBw/u/e9y5Mj0+yvUUCE9Hjmy98cu1hYBNSIqvsUiIoBjGlQcM7NemTw5BdPiZsojjoChQ3sXEJdbrrpgVgh8m2xSuWa48sqw4oqgUj1VWsAJJ6QvI8VfTiZPrv+52iKgmpn1d4sXp2bImTPTfalmyocfhjPOKB0E11mn+5rhSivBsgPsU79Qo584sbP5fPLkvmk+H2C/WjOzvlNt3nPJEnjooRQ8Z8xIt7vvhvXWg623hvXXL91MufnmcPXVDbuctjF2bGPyzw6oZmZ1UC7vGQEf+EAKmoUAeuedsOqqMHp0CqAnnwxbbZW2FY7VqGZKqx+l9KKVMnr06Jg5c2azi2Fm/cCoUWmMY75WOW0a7LMPrLBCCpyF21ZbpfxkJf2pl+9AI+nOiBi91HYH1PIcUM2skgUL4B//gDvugOOOS71d8z1TFy1KwXTx4tbttGO1KxdQB8pMSWZmZVUzNV0EPPgg/OpXcOyxqaa5+uqps8uDD8JGG6Wm2bzC8AwH04HBOVQzG9DK5T5few023BBuvz3VQKdPT71kt9sOtt0WDjoI3v9+GDKk8zjOew5sbvKtwE2+Zu2vXO7zE59IAbMQQLfdFtbtZo0q5z0HBudQe8AB1az9DRqUcqGlcp9vvtm8clnrcg7VzCyTz5kOG1Y+92lWCwdUMxtQipfzOvpoGDcuNfMuWpTuJ0xI+5jVwp2SzGxAKZ4nd9KkdL/ffvDyy307NZ21N+dQK3AO1az9OGdqveUcqpkNKMVjS889F7785TRJvHOm1hccUM2s7RTnSadMgW98I82he+qpKUfqnKnVm3OoZtZ2Sq0nevHFaVajz342TULfiOW8bGBxDrUC51DN+peINKPRDjs4T2p9xzlUM2sbxfnRX/4SfvYzeO974eCD07qizpNaozWtyVfSu4FtgHWAFYAXgAeAv0fEi80ql5m1tlJz744dC5tuCqedBh/8IPz2t55X1xqvoQFV0ibAZ4GDgbcBS4CXgIXAqsAQYImkvwLnAL+NiCWNLKOZtbZTTlk6P9rRkXKihW2FfKjzpNZIDWvylXQOcA+wJfBt4H3AChGxVkRsEBErA2sD/wP8G/g+MFvSjo0qo5k1X7ml1B54IAXI++5Ltc68HXdMgTNv7FiYNSvlTGfNcjC1vtfIHOoC4F0R8ZGIOCsi/hURXboHRMRzEfHniPgCsBFwIrB+A8toZk1UarjLV78K73sf7LRTmnf3ne90ftRaU8OafCPi2Br3XwL8to+KY2YtqNRwlwsugMMOg8ceS710t9jC+VFrTR6HamYtY/bs0s25TzyRgik4P2qtq5E51L9IemfRtg9JWqlRZTCz1lKcL11rreqac50ftVbUyBzqh4FhhQeSBgHXAe8s+woza1ul8qULF8Khh3paQOufmj2xg5p8fjNrkny+dPDgdH/ZZWm2o4kTUxPvxIluzrX+wzlUM2uKcvnSuXNTztSsv2l0DbXUxMGeTNisjRXnSX/zm1QzXWUVD3+x9tLoGuq1khYXbbuhxDYiYu0GlcnM+kipaQIPPhiGDoUvfcnDX6y9NDKgntzAc5lZCyg1rvQ3v0m50W98A97+dg9/sfbh5dsq8PJtZr0zaJCXUbP24+XbzKzhRo50ntQGjob38pUk4CPAdqQVZwCeBm4Drg9Xmc3axpgxMG4cXHxxZ5503DjYf/9ml8ys/hq9fNv7SPPzvh14E3iONBZ1jawsD0g6KCLubmS5zKxvFCZmyOdJJ0yAqVObXTKz+mtYDlXS20jLsj0FHA9Mi4g3sueWBz4EfI9Ua313RDzTkIJV4ByqWe84h2rtqBVyqBOB/wI7RcS1hWAKEBELI+LPwM7ZPjWtTGNmzVc83vSgg2DllZ1DtYGjkQF1N+DMiHil3A4R8RLwc2D3RhXKzHqv1Ly8f/sbfOITqYnXc/PaQNDIgLop8I8q9rsz29fM+olS8/L++tdw553pOc/NawNBI3OobwLbR8T0bvbbFrg1Ipo+z7BzqGbVca7UBpJWyKGK6uft9So0Zv1ERwcMG+ZcqVkrzOVbrOk1UzOrTiF3evTRnpfXzHP5mlmP5XOnW2zROd502DA44wznSm1g8Vy+FTiHalaZc6c2EDU9hyppDUl/kPTRCvt8NNvHS7eZtaD8WNORI9MybM6dmiWN7JT0BWAT4C8V9vkLsDFwXCMKZGbVKx5reuaZsMwyMH68x5maQWMD6gHAWZUmv8+e+wWwd8NKZWZVKTXW9NJLYckSjzM1g8Z2StoIuLeK/WYDI/q2KGZWq9mzUw/evB13hLlz4YknmlMms1bSyBrqf4GhVey3cravmbWQ4cNL50uHD29OecxaTSMD6j+AvarYb2+qm6LQzBpo8eKl86Xjx6ftZtbYgHoGMEHSoeV2kHQIcBhwesNKZWZVmTsXJk3qmi+dNCltN7MG5lAj4jJJpwHnSzoWuAZ4nDQd4XDgo8Bo4CcRcXmjymVm1Rk+HDbYAGbN6tw2bZqHyJgVNHSav4g4TtJNpCE0XwKWz55aCNwK7B0RVzayTGbWvY4OmD8/NfFecEHn9ILjx8Oppza5cGYtouHz5kbEn4A/SVoWWCPb/HxEOBNj1qImT4ZLLoF58zqnF9x44zRkxkNkzJKmTUSfBdCnm3V+M6teYcjM4MGdAbQwxaCZJY2cevDTkgbV+JpNJe3UV2Uys+qUGzLj/KlZp0b28j0O+I+kUyS9t9xO2Zy/B0v6E3AXsG7DSmhmS8nnT4uHzHiKQbNOjezlu6WkA4GJwAmSXiPNivQcqVPSqqR5fIcDLwK/Bo6KiCcbVUYzW5rzp2bVacrybZLeDnwYeD+wDrAC8AJwP6m3700RsajhBSvi5dtsoFmyBB56CKZPhxkz0v0dd8DChV6izayg3PJtTemUFBH/Af7TjHObDRQdHal2OXt2ynWecMLSNconn+wMnDNmwMyZaXHwbbaBrbeGffeFz3425UvHjOl8nfOnZktrWi9fM+s7haXWzj23c8zo4YfDv/8NK63UGUQXLUqBc5tt4AtfSD+vXbQa8Te/mZZkyx9rwoQUrM2sU1OafPuCpN2B04BBwDkRcWrR88NIednhpC8SP4yI8ysd002+1l+NGpXWLc3XKqdNgwMOSJ2Jtt463UaMAKn741VT2zUbKMo1+bZFQM2G4zwAfASYA8wAxkbEvbl9vg4Mi4ivSFqLlK9dJyLeKHdcB1TrrwYNSouAO+9pVn/lAmojh830pW2AhyLi4SxAXsLSi5QHsIokkZaIewHw7EzWFjo6Uq100CDYfHNYbTWPGzVrtHYJqOsD+SWO52Tb8k4HRgJzgX8Dn4+IJcUHknSkpJmSZj777LN9VV6zuinkS6dMSbXSM86ACDj00K7jRidM8LhRs77U1IAqafNsBqWvS1on27appFVqPVSJbcVt2R8F7gbWA7YETpe01ILnEXF2RIyOiNFrrbVWjcUwa7zJk1OHoTFjUhPvmDFw6aUpqOaXWps82XlPs77UlF6+klYGzgP2IzW7Lktazm0e8B3Ssm5fquGQc4ANc483INVE8w4DTo2UNH5I0iPAu4DpPbkGs1ZRmGc3b8cd0zqlTzxR+jVmVn/NqqH+GNiBNLnDKnStYV4N7F7j8WYAm0naWNJywEHAFUX7PA7sCiDpbcA7gYdrL7pZaxk50vlSs1bQrIC6L/CViJgGFPc5fAzYqJaDZSvXHAtcS5rO8HcRcY+koyQdle12CrCDpH8DN2Tnf643F2HWCsaMgXHjuuZLx43rOmTGzPpesyZ2WBF4vsxzq7B0kO1WRFxNqt3mt52V+3kusFutxzVrdYUOR4V5dkeOTI+nTm12ycwGlmbVUGcAh5R5bn/g7w0si1m/VBgqc++9cNJJMGtWGmM6a1Z6PHt2s0toNrA0K6B+A9hX0vXAZ0g9cveQ9Cvgk8BJTSqXWb+QHyqz+ebOoZq1gqYE1Ii4hdRBaHnS+FABJwObAB+OiBnNKJdZf5EfKnPCCamJ12NOzZqraZPjR8StwE6SVgRWA16KiPnNKo9Zf5IfKlMYWzpxYmr+3Xxzjzk1a4ZmjUPdvMTmVZWbpTs/D6+ZderoSEus5ZdUGzsW1lknBdVZs5pbPrOBqlk11FksPZNRsUGNKIhZf1LInR59tJdUM2s1zQqopUbIrU4a1rIb8PnGFsesf8jnTrfYonOozLBhaQ5fN/OaNU/LLd8maRIwPCLKDatpGC/fZq3Gy7KZNV9/Wr5tGksvvWbW9vJLsI0alR4DvP46XHgh7LILrLKKh8iYtaqm9fKt4OPAS80uhFkjFXKj+ZzoYYfBL38Jd90FH/hAat59/XXnTs1aVbN6+f6uxOblSKu/bAZ8vbElMmuufG4U0v3556c1Te+5B9Zbr3PfwYO7TjPoITJmraEpOVRJ00psXkBahu3ybF7epnMO1RrFuVGz/qNcDrUpNdSI8DoYZjnDh3cdVwrOjZr1N63YKclsQOnogPnzYfz4rtMHjh/v6QPN+pNW7JRkNqBMngyXXALz5nXmRjfeGJYscW7UrD9pWECVNIPuZ0d6S0Rs04fFMWsZhXl5Bw/uDKCF/KmZ9R+NrKHeQw0B1WwgKDUvLzh/atYfNSygRsT4Rp3LrD/wvLxm7aWqgCppJnAe0BERL/ZtkcwGBs/La9ZeqhqHKulCYF9SAL4COBe4LnoxiFXSgcARwDuApbJFEbF2T49dLx6Han3JY0/N+qdezeUbEYcC6wDHZPfXAI9Lmixpsx4UZhxwIfAQsAEpSF+ZlecV4PRaj2nW6vJz9W6xBay2muflNWsnVY9DjYjXI+K8iPggaXrA84GDgfsk3SxpvKRq+yV+GTiFFKABzoyIw4GNgeeA+VVfgVk/UMiXTpmSaqWnnw4RaWrB/NjTCRM89tSsv+rpxA5L6Oyx+yYg4EzgUUkfqeL1mwG3RsSb2euHAkTEq8D3gGN7WC6zlpTPlw4enO4vvTQF1YkTUzPvxImel9esP6u6l6+kIcAngfHATqTm2jOBCyPiaUmrk5pqfwFs0s3hXgaWz35+EhgJ3FQ4FbBGteUy6w8KY03zdtwR5s6FJ55oTpnMrL6qqqFKOheYB5wBPAaMiYh3RcT3I+JpgIh4ATgNGFHFIWcC78l+vgI4UdIRkg4FfgDcUdNVmLW4kSOdLzVrd9U2+b4b+BKwbkSMj4i/ldnvHqCaie+/Czye/XwiMJ1U2z2flEM9sspymfULY8bAuHFd86XjxnWdzMHM+remLN9WiqTlgeUj4pVml6XAw2asXkaNgk98AqZO7VzHtPB41qzmls3MalNu2Ey141APAjaMiB+UeO5LwOMRUWrR8HLHGwPc1JtxrI3ggGr14jGnZu2jV+NQga+RFgAvZX72fC1uAOZKOk3SDjW+1qxf6eiAoUOdQzVrd9UG1E2Bcg1Ts0nDYGrxbuCXwEeBWyQ9LukHkraq8ThmLW/yZDjmmDTGNJ9DPfhgjzk1ayfVDpuZT5rRqJQNgYW1nDQi7iF1RjpR0pbAgaQhOcdJehi4JCK+UcsxzVrV7Nlw111d5+sdOTKtf+oxp2bto9oa6vXANyV1mV9X0lrACcBfelqAiLg7Ir4WEZsCewErUnsTsllLyE8vOGoUXHghrLtuat4dOzZ1QHrzzTRj0uabN7u0ZlZP1dZQvwLcDvxH0jXAU8C6pCbbl4Dje1qAbEKIfUm11A8C/wUu7unxzJqlML1gfhm2ceNgpZXg8MPhvPO8PJtZO6t2cvzHgfeSZkLaEPhYdj8FeH9E1DTXi6Shkg6VdDUpOJ8GvAgcBKwdEZ+u5XhmraDU9IIXX5x68n7nO55i0KzdNWUcqqQFpLmArwV+C1wREa83vCDd8LAZq4WHxpgNDL0dNlNvRwFvi4hPRERHKwZTs0qKc6U//zmstZaHxpgNZFXlUCUNBj5PynVuQC8XBI+IC6rd16zVlMuVbrhhyo3mtztXajZwVNsp6SfA/5IWAZ8GvNFnJTJrcflcKXTmSgu50fzQGOdKzQaOaqcefBr4fkT8qO+L1DqcQ7VSnCs1G9h6m0MV8K/6FsmsfynkTYcMca7UzJZWbUD9JeCGKxuwCnnTKVPgzDNh/Piu0whOmOBpBM0GumpzqE8DB0uaBlxHmswhLyLi57WeXNI7KN/J6epaj2fWV4rzpssuC0ccAQ8/nGY8cq7UzKrNoS7pZpeIiEFVn1TanDT+dHNSc3KvjtdXnEO1AudNzaygXA61qhpqRNR7vOovgOVIw3Duxb2GrYV1dMCwYSlPWqihgvOmZtZVtU2+9fY+4KCIuLJJ5zerSiF3evTRHmNqZpVVHVCzlWaOA0aT5vHdJyLukfR5YHpE3FbDef9DibypWavJ507zy68NGwZnnOG8qZl1qqopV9I2wIPAfsCjwNuB5bOn1yUF2locB3xd0iY1vs6soWbPTjVS6Fx+bcECePllB1Mz66ra3OhPSDMkvYM0Y1K+I9F0YJsaz/tdYH3gPkkPSJpefKvxeGZ1k5+nd5VVPObUzKpTbZPv+4G9I2KJpOJeuc8DVc/jm5mV3cxaSvE8vSefnObpvfhi507NrLJqA+rLwFplntuENE61ahFxWC37mzVK8XjTSZPS/X77pWZez89rZuVUG1D/CJws6TbgsWxbSFoT+BJwWU9Ono1H3YrUyem8iJgnaVPg6Yh4tSfHNOupjg64997OnGnBSSfBd7/r8aZmVlm1OdSvAq+QxozenG07C7gf+C9wYi0nlbSypN+Rmn3PAU4B1sue/g5wUi3HM+utQlPvJps4Z2pmPVNVQI2IF4HtgGNINdTrgUdIgfYDPahN/hjYAdgVWIWunZyuBnav8XhmvVJo6j3llJQj9Ty9ZlarqsehRsQbwLnZrbf2BT4fEdMkFU8x+BiwUR3OYVa1wvCYwtSChfGmQ4bA2Wc7Z2pm3at2HOqQ7m41nndFUu/gUlYBnK2yhii1JFthvOn118NGGzmYmll1qq2hvgZ0N4t+LZPZzwAOAa4p8dz+wN9rOJZZj+SHyMyZk5Zku+ACD48xs56pNqAeztIBdXVgN9KKMafUeN5vANdLuh74fXbsPSR9kRRQd67xeGY185JsZlZPVS3fVvEA0pnAwoj4Yo2v+wBwKqmz0yBSUL0dOD4ibu1VoerEy7e1Ny/JZmY9UW75tnosy3YZqfm2JhFxa0TsBAwlLTK+SkR8oFWCqbW/4cM9RMbM6qceAXVrYGEtL5A0pjCFYUT8NyLmRsT8OpTFrCodHTB/fsqb5ofIjB/vITJm1jNV5VAlfb/E5uWAkaSxpD+t8bw3AE9L+j1wSUS4E5I11OTJcMklMG9e5xCZjTeGJUucNzWznqkqhyrpkRKbFwBzgMuBsyNicdUnlbYADgQOIK1gMwf4LSm43lntcYqOuTtwGikfe05EnFpin11IwX8w8FxEfLDSMZ1DbV/On5pZT5XLoVZVQ42IjetZmIi4hzRd4YmStiQF108Cx0l6mBRYv1Ht8bLJIc4APkIKzjMkXRER9+b2WRU4E9g9Ih7PFky3AWrkyJQvLfTwBedPzax36pFD7ZWIuDsivhYRmwJ7kSZ9+FqNh9kGeCgiHs5mdLoE2Lton3HAZRHxeHbeZ3pZdOvHxoxJy7Ll86fjxnUNsGZmtag2h1rL5PcREVWPS5W0OmkqwgOBD5Im27+4hvNBWqz8idzjOcC2Rfu8Axgs6SbSbEynRcRFJcpzJHAkwPDhw2sshvUXhTl6C/nTkSPT46lTm10yM+uvqs2hPkuqORamGHwNWDn7eT4pCBZERFRsTpU0FNiHFER3BRYDV5FqlldFRK29hj8JfDQiPpM9/jSwTURMzO1zOjA6O9+KwG3AxyPigXLHdQ61fTmHamY91dtxqHsBzwCfAoZExFBScP10tn2viFgru1WTm3yGtPzbG8B4YO2IOCAiLqs1mGbmkNZULdgAmFtin2si4vWIeI60DN17e3AuawMeg2pm9VZtQP0Z8J2IuDgiFgBExIKI+A1ptqMzajzvUcDbIuITEdEREa/X+PpiM4DNJG0saTngIOCKon3+COwkadlsMv9tgdm9PK/1Qx6DamZ9odq5fEexdI2v4EnSeNSqRcQFtexfxfEWSzoWuJY0bOa8iLhH0lHZ82dFxGxJ1wD/ApaQhtbMqmc5rH/wGFQz6wvV5lD/CTxLyjkuzG1fgZT7XCMituzmGNOB8RFxb/ZzRRGxTbcF62POobYn50/NrDd6NQ4VmAhcDcyRdB0pB7o2adznEOBjVRzjHjo7L91L98vBmfUJj0E1s75Q7cQON0vaDPgiae7e9wHzgPOBn0ZEuebg/DEOy/08vkelNauDwhjUiy/uXPt03DjYf/9ml8zM+rNqa6hExFPA8X1YFrOG8BhUM+sLNa2HKmlzYCvSEJXzImKepE2BpyPi1RqOU2kB8SXAK8D9PRxCUzfOobaXjo7UIenee2HhQudQzaxnepVDlbQycB6wP7Aoe901pGbf7wCPA1+qoTw30TWHKpbOqS6QdA7wfxHhjznrlY6ONCTm3HNTzdQ5VDOrt2rHof4Y2IE0y9AqpABYcDWwe43n/TApCJ8F7EGawWgP4BekKQQPAL4LHAF8u8Zjmy1l8uQUTMeMSYF1woSuY1AnTPAYVDPrnWpzqPsCn4+IadnKLnmPARvVeN5jgQsj4ltF26+V9C3S8Jr/kbQsaSYlf9RZr8yenTogQedY04kTU/Pv5pungOsxqGbWG9XWUFcEni/z3CpArU2yuwG3lHnuVqDQGHczsG6NxzbroqMDhg3rOtXg2LEwZUoKprNmOZiaWe9VG1BnAIeUeW5/4O81nvcF0vzApeyVPQ9pjOvLNR7b7C2F3OnRR7uZ18z6VrVNvt8Arpd0PfB7UgeiPSR9kRRQK/XaLeX7wM8kjQD+RJqFaS3SGqZ7kCaSgFRTnVHjsc3eks+dbrFF51CZYcPgjDNcMzWz+ql62IykD5Amwt+ONF9uALcDx0fErTWfWNqHtJD4lqTAvhi4mzQJ/9RsnzWBNyLilVqPXw8eNtP/eZpBM6u3Hg+bkbQ8qRY6PSJ2krQisBrwUkTM72mBIuJy4HJJy5Bqp89GxJKifZ7r6fHNoHOZNg+RMbO+1m0ONZtc4RxgvezxfyNibm+CadHxl0TE08XB1Ky3vEybmTVStTnUfwPvAP7ah2Uxqysv02ZmjVRtQP0icIGkp4BrImJxH5bJrC4KY08HD+4MoIX8qZlZvVU7bGYqqcn3j6QpAZ+V9Ez+1mclNKtRRweMGgVDhnQdewrOn5pZ36m2hnoGXr/U+oH8nL1z5qR86QUXdC7TNmFCago2M6u3sgFV0jhS8+4LJaYINGtJ+XGnAMsuC0ccAQ8/7CkGzaxvlR2HKulNYPuImJ49XgZ4FNgjImY1rIRN5HGo/Y/HnZpZXys3DrVSDlUlHm8ALFfPgpnVg/OmZtZs1eZQzVqW86Zm1gqaElAlfRP4n4jYJrft/4DPAPsA90ZE8TJxZiU5b2pmraBSDnUJ8BvgqcIm4DjgV8DTRbtHRHyl6pNKWwO3AetFxDPZtuuAfwK/BGZHRLVDevqMc6j9g/OmZtZIPZnL93Fgx6Jtj1F6ZZkAqg6owEzS+qofAy6UtBKwE2ny/cLxzKri+XrNrBWUDagRMaKvThoRIela0lJtFwIfAt4gLSi+SV+d19pPfr7efN50/Hg49dRuXmxmVkfN7JT0Z+CMbDjOx4AbI2KRVNy52Kw8z9drZq2imQH1WmAo8AFSQHV9wmrm+XrNrFU0reNPRLwATAf+DxhOqrGaVa2jA4YN87hTM2sNze5J+2dgb+C+iHi8yWWxfqQw9vToo9M40/x6pxMmeL1TM2u8Zk/scDVwcnaf50SqVZQfe7rFFp3502HD4IwznD81s8YrOw617AtSr6F1gWfqsS6qpMOBmyLi4ezxUOCTEXFub4/dWx6H2ro89tTMmqUnc/kWH2APSXcAC0hjVN+TbT9b0qd6WrCIOK8QTLPHr7RCMLXWVhh7mnfLLWm7mVkzVBVQJR0CXAHcBxxZ9LoHgQn1L5pZeYsXp7Gm+dzp+PFpu5lZM1RbQz0B+EFEHAr8uui5e4DN61oqs27MnQuTJqXc6QorpPtJk9J2M7NmqDagbgRcV+a5BaTxpGZ9Lr9M2wYbwKxZKWc6a1Z67OEyZtYs1QbUJ4D3lXluNPBQfYpjVl5hqMyUKXDmmUs3+Xq4jJk1U7XDZs4FTpL0NDA12yZJuwLHA9/ug7KZdeFl2syslVU1bCYbKnM6cBTwJikQLwIGAb+IiGP6spDN4mEzrcVDZcysFfRk+ba3RIq6x0j6CWllmDWBF0gT2j9Q15KaleFl2syslVUVUCUNiYj5EfEQzpdaE3iZNjNrddXmUJ+T9CfgEuDqiFhYj5NL2hzYCtgQOC8i5knaFHg6Il6txzmsPXiZNjNrddUG1OOBTwKXAq9JuoIUXK/tyfSDklYGzgP2AxZn5bgGmAd8hzQT05dqPa61Ly/TZmatrqphMxFxekR8kFSTPAl4O2nmpGcknSvpIzWe98fADsCHgVXoOhn+1cDuNR7P2tzIkV6mzcxaW03Lt0XE3Ij4aUTsAGxMqk3uTu1rme4LfCUippF6Dec9RppIwuwtY8bAuHFdx52OG9e1g5KZWTP1aPm2LM95YHZblzTxQy1WBJ4v89wqLB1kbYArTNxQyJ+OHJkeT53a7JKZmSVVL98maQRwACmIbgk8Tcqp/jYibq3ppNJNwNyIGCdpEGlM6+iI+Ieki4A1I2KPWo7ZFzwOtXV4DKqZtYpejUPNlm0bTRp7ehmpw9BNUetiqp2+AVwv6Xrg90AAe0j6IrA/sHMPj2ttymNQzazVVZtDnQ18HFgnIv43Iqb1IpgSEbcAuwLLk2ZgEnAysAnw4YiY0dNjW/vJj0EtXq7Nc/eaWauodqak8fU+cdZMvJOkFYHVgJciYn69z2P9n8egmll/UDagStoDuCUiXsl+rigirq72pNmEDsVWTVMGv3W8e6s9nrU3j0E1s/6gUg31SmA7YHr2cyVBmii/WrOy11RSy/GsjRXGoDp/amatrFJA3Rh4KvdzPZUaPbg6sFt2+3ydz2f9WGEM6sUXd87hO24c7L9/s0tmZtapbECNiMfyD4GnImJR8X6SlgXWq+WkEfHXMk9dLmkSaXhOd7ViGyA8BtXM+oNq10N9E9g+IqaXeG4rYHpE1KWJNlu0/LKIGFaP4/WGx6G2Bo9BNbNWUm4carXDZlThuRWAuqw+k/k48FIdj2f9WEcHDB3qeXzNrPVV6uX7HtKMSAV7SHpX0W4rkJpna1pkXNLvSmxeDngXsBnw9VqOZ+1r8mQ45pjUxHvuuZ051IMPhh/9qNmlMzPrVKlT0j6klWUg5VBPLLPfI8D/1njetUpsWwD8Dfi/WobgWHubPRvuugu22KJrDnXePI9BNbPWUimgfgf4Iam59xXgQ0DxDEZvlOqo1J2I8BohVpXClINjx3YG0GnTUnA1M2sllXr5LiJNWg81LvNmVg/5KQcvuKCzuXf8eDj11CYXzsysSE3Lt0naAHgHKXfahZtprd485aCZ9SfVrjazCvA70qQL0NnrNz/mpuKwGUkz6H52pLdExDbV7mvtyVMOmll/Um0N9bvAcGAn4BZSh6UXgU+RcqvV1BfuoYaAagNXR0eqnQ4Z4ikHzaz/qDag7kFaw/SO7PHcbIm1myX9CPgyafhMWX2xYk2epN2B00g15XMiomSWTdLWwO3AgRFxaV+WyWrX0ZGWZDv3XJgzZ+n86YQJKdiambWaagPq24AnIuJNSa+T5t0tuBr4Q91LVgNJg4AzgI8Ac4AZkq4oXrEm2+97wLWNL6VVY/LkFEwLtdJll4UjjoCHH4bNN0/PO39qZq2o2t67TwBrZj8/COyZe25b0hjSmkg6UNL1kh6X9EzxrcbDbQM8FBEPR8QbwCXA3iX2m0gK/rUe3xrg9dc786YFY8embRLMmuVgamatq9qAeh3w4eznnwDHSPq7pGnAKcBFtZxU0jjgQuAhYAPgCtJk+MuQxryeXsvxgPVJQb9gTrYtf871Sbnfs7op25GSZkqa+eyzz9ZYDKukowNGjUpz844alR4vWQI33piadjfYANZYw9MMmln/VG1A/QrZrEkR8StgP9IMSS8CxwJfrfG8XyYF4mOyx2dGxOGkZeKeA+bXeLxScw0Xd4D6KfCViKg4nXpEnB0RoyNi9FprlZrQyXqikBudMiVNdD9lChx/PKy9Nhx3HGy5Jdx3H5x2WsqTTpuWevQWVpo54YRmX4GZWWVV5VAjYj65IBcRlwOX9+K8mwG3ZjnZN4Gh2XFflfQ9Ui34hzUcbw6wYe7xBsDcon1GA5dIgtR8vYekxRExtWeXYLUozo2OGQMXXQRHHZWmFiwoNOnmpxl03tTM+oOaJnaoo5eB5bOfnwRGAjdljwWsUePxZgCbSdo4O95BwLj8DhHx1iLpki4ArnQwbZzi3Cikxw89tPS++WkGzcz6i0qrzTxLbRMxrF3DeWcC7yH1tr0COFHSYuAN0iT8d1R4balzL5Z0bHa8QcB5EXGPpKOy5yvmTa3vFebk9ZhSM2tXlWqoZ9B3EzF8F9go+/nE7OczScFwBnBkrQfMpj68umhbyUDa12NirSvPyWtmA4EiWmPyIknLA8tHxCvNLkvB6NGjY+bMmc0uRr83alTqhDRvXsqHFubkXbgQnnii+9ebmbUSSXdGxOji7U3JoUoaA9wUuWgeEQuBhc0oj/Utz8lrZgNBtZPjdzuxfY2T2d8APC3pd8BvI+LvNbzW+pmRI50/NbP2V+041HtK3J4CRpCmJZxV43nfDfwS+ChwSzZb0g8kbVXjcawfGDMGxo3rOrZ03LiuAdbMrL/rVQ5V0sqkXroXR8Q5PTzGlsCBwCeBTYCHgUsi4hs9LlidOIdaH6NGwSc+AVOndo4tLTyeVetXMTOzJiuXQ+11pyRJHwdOz4/z7MWx9gR+AawTERXXV20EB9T6GDQozY40eHDntkIO9c2K81aZmbWecgG12ibfSlYFVuvpiyWtLukzkq4DLgNWBi6uQ7msRRTGoOY5h2pm7abaTkl7lNi8HGmGoy8C02o5qaShpInqDwR2BRYDV5FmOLoq6/FrbcBjUM1soKh22MyVpF6+xZPQLwL+SJogvxbPZMe7FhgPXBERr9d4DOsHJk+GSy5JY1AL8/NuvHFaZcbTC5pZO6k2oJbKjy4AnomeJWGPAi5rpUkcrG94DKqZDRTVrjbzWD1PGhEX1PN41po6OmDoUI9BNbOBoaaZkiS9k7Rw91L1i2wuXbO3TJ4MxxyT1jM999zO/OnBB8OPftTs0pmZ1Ve1nZLeDXSQOiGVW8y76cNcrLXMnp3WOt1ii67rm86b5/ypmbWfamuo55E6IO0JPERaZs2sosKUg/n1TadNS8HVzKzdVDsOdSTw1Yj4c0Q8GBGPFd+6O4Ck87IFwJG0czbLkrUxTzloZgNJtQF1OjC8l+c6FFgr+3kasHkvj2ctbtq0lD+dODH16p04MT2eVtOoZTOz/qHaJt8jgQ5J80nB8KXiHSJifjfHeArYRdK9pDzsCpKGlNu5iuNZiyvkUCdN6ty2aBF897vNK5OZWV+ptob6HPAocBHwBPBqiVt3zgZOBV4mdWKaVuY41R7PWlwhh5rnITNm1q6qraH+Gtge+CE97JQUEd+WdBUpH3sRMAn4T63Hsf6jkEO9+OLOITPjxsH++ze7ZGZm9VdtQB0DHBERvZq0PiLuBO6UtCtwfkQ80pvjWWvL51ALQ2YmTEjLtpmZtZuqlm+TdA9wQkRMrevJpfVINd/VgReA2yJibj3P0Rtevq13vGybmbWj3i7f9mXgBEkj6lSYZSSdCTwG/J60BurvgccknSGpHsvKWZN52TYzG0iqDVwnk4bNPCDpAUnTi281nvfbwOHA14ERwIrZ/dez7d+q8XjWYvLLtuXHoY4fDyec0OzSmZnVX7U51FnZrV4OAb4RET/MbXsc+IGkAD4HnFjH81mDedk2Mxtoql1t5rA6n3dt4F9lnvtX9rz1Y162zcwGmmblKh8ADirz3EHA/Q0si/UB50/NbKCpdrWZ33W3T0QcUMN5JwGXSBoOXAo8TaqVfpI0RKdcsLV+IJ8/veCCzjGo48fDqac2uXBmZn2k2hzqWiW2rQ68E3ieGmuUEfE7SS+ROjudBgwmrWZzJ7B7RFxXy/GstTh/amYDUVXjUMu+WNoQuBw4OSL+1MNjLAOsCTwXEUt6XJg+4HGoPePxp2bWzno7DrWkiHgC+C7w/V4cY0lEPNNqwdR6zvlTMxuI6tEp6U1ggzocx9qAx5+a2UBVbaekUmuXLkea6P4UYEY9C2X9l/OnZjZQ1TKxQ6lkq0jB9DN1K5G1tI6OFDQLk92fcEIKlK+8Ar/+Ndx7r8efmtnAVMtqM8UWAHMi4slaTyppT+Bq5037l46OFEDPPbdzKMxhh8Evf5kWEv/wh2GTTdL2Mbl3jPOnZjYQVDtT0l/rfN4/As9Iugi4ICJm1/n41gcmT07BtBAsx4yB88+HQw5JNdZ11klBd8KErkF3woT0WjOzdla2U5KkNST9QdJHK+zz0WyfWqcKfDtwNnAAMEvSbZKOkDS0xuNYAxWmE8zbcUeYOzcFU0jNvJMnp/zpCiuk+8mTnT81s/ZXqZfvF4BNgL9U2OcvwMbAcbWcNCIejYiTImJj4CPAQ8BPgKck/UpSqSZma7Jqh8OMHQuzZqUxp7NmOZia2cBQKaAeAJwVFWZ+yJ77BbB3TwsQETdGxKeBd5BmSjoYuF7SI5K+KKnaPK/1IQ+HMTOrrFKw2gi4t4pjzCatZdojkj4IHAbsR5p+8AxgKvBR0tSEWwPjenp8qw8PhzEzq6xSQP0vUE1Oc+Vs36pJ2gg4NLuNAG4CjgQui4iF2W43SLoN+HUtx7a+4eXYzMwqq9Tk+w9gryqOsXe2by0eBo4ALgY2jYhdI6IjF0wL7gGm13hsq7OODhg2zNMJmplVUimgngFMkHRouR0kHUJqrj29xvP+D7BRRHwzIh4pt1NEPBAR7qDURIWxp0cfnYa/5POnEyY4f2pmVlC2yTciLpN0GnC+pGOBa4DHSTMmDSflOEcDP4mIy2s872jgbmBu8ROS1gWOiIhv13hM6wP5sadbbNGZPx02DM44w/lTM7OCbpdvk/Q/pCE0OwDLZ5sXArcCP42IK2s+qfQmsH1ELNWcK2krYHpEDKr1uPXm5du8FJuZWbFyy7d1OyQlW+f0T9nwlTWyzc9HxOLelIfScwNDWrnmxV4c2+oknzv1VIJmZpVVPcYzC6BP9/REWS62kI8N4OeSXinabQXg3VSeTMIaoDh36qkEzcwqa+SkCfOB57OfBbwMvFC0zxvAn4EzG1guK8G5UzOz2nSbQ+2Tk0rnA9+u1MO3FQzkHKpzp2ZmpZXLoVYaNtNnIuKwVg+mA93IkR53amZWi6YEVGt9Y8bAuHFdx52OG9e1c5KZmXVqWA5V0nRgfETcK2kG5Xv5AhAR2zSmZFZKYeKGQu505Mj0eOrUZpfMzKw1NbJT0j10zvl7D90EVGuu2bPhrrtg0qTObYsWwXe/27wymZm1soYF1Ig4LPfz+Ead16rX0ZF6986eDaus4vGnZma1cA7VgM5xp1OmpN69xx67dA7Vc/eamZXXyBxqt3nTPOdQGys/7hQ6m3r32w9efjnVTCdP9vhTM7NyGjYOVdIF1BZQD+t+r741kMahetypmVl1ejyXb704b9q6Ojpg6FDnTM3MesM5VGPyZDjmmKXXOz34YOdMzcyq5XGo9tYQmfycvSNHwrx5zpmamVXL41AHuPwSbWPHdgbQadNScDUzs+p4HOoA5iXazMzqp5E11C4kLQeMB7YB1gWeAu4ALoyIN3pwvN2B04BBwDkRcWrR8wcDX8kevgZ8NiL+2eMLaANeos3MrH6atXzbSOAaYD3gTuAZYG3g/cA8YPeIuLeG4w0CHgA+AswBZgBj88eQtAMwOyJelPQx4FsRsW2l47b7sBkPlTEzq11LLd8GnE1aYPztEbFdROwVEdsBm2bbz6rxeNsAD0XEw1nt9hJg7/wOEfH3iHgxe3g7sEGvrqCfy+dO8zxUxsysZ5oVUEcDJ0bE4/mN2eMTga1rPN76wBO5x3OybeVMAP5c6glJR0qaKWnms88+W2Mx+ofi3KmnFzQz671m5VAfBVYo89wKwONlnitHJbaVbMuWNIYUUHcs9XxEnE2qQTN69Oi27Ins3KmZWf01q4b6VWCSpC45TEnbAd+ms/NQteYAG+YebwDMLd5J0nuAc4C9I+L5Gs/RNmbPTr15IQXPWbNSLvXllx1Mzcx6qpmT4w8F/i7pGTo7Ja0NPA98HZhaw+FnAJtJ2hh4EjgIGFd0/uHAZcCnI+KBHl5Gv5fPnXqaQTOz+mn0xA5R9LguImKxpGOBa0nDZs6LiHskHZU9fxYpN7sGcKYkgMWlemm1M487NTPrO00ZNtNftNuwmVGj0nqnY8Z0XUzcuVMzs+qVGzbjgFpBuwVUjzs1M+u9VhuHak0wcqTHnZqZ9ZWmBVRJB0q6XtLjkp4pvjWrXO1szBgYN67ruNNx47p2TjIzs55pSkCVNA64EHiINMTlCuDKrDyvAKc3o1ztrjBxw8SJqZl34sTOiR3MzKx3mjWX713ApcCpwCJgdET8Q9IqwHXApRHxw4YXrIhzqGZmVqzVcqibAbdGxJvAm6QxqUTEq8D3gGObVK625bl7zcz6VrMC6svA8tnPTwL5j3SRxotanXjuXjOzvtesuXxnAu8hTcRwBXCipMXAG6QJGO5oUrnakufuNTPre83KoW4HbBQRv5W0KqmD0h6kWY4Ka5k+3PCCFWmXHKpzp2Zm9dNSOdSIuD0ifpv9/FJE7A2sDKwaEdu2QjBtJ8OHO3dqZtbXmjkOdbls7dFzJF0FnAEcKGm5ZpWpHXV0wPz5MH5819zp+PHOnZqZ1VNTcqiSRgLXAOsBd5JWmxkFHAJ8U9LuEXFvM8rWbiZPhksugXnzOnOnG28MS5Y4d2pmVk/N6pR0Nqmn704R8dZi4tkSa1cBZwE7N6lsbaOjA+69N60oM3hwZwAt5E/NzKx+mtXkOxo4MR9MAbLHJwJbN6VUbaQwVGaTTZw/NTNrhGbVUB8FytWRVgAeL/OcVakwVGbePK99ambWCM0KqF8FfiTpkYh4a8xpNpzm28CXm1SutjF7dmdTL3TmT4cMgbPPdv7UzKzeGtbkK2mGpOmSpgMnkKYb/LukpyT9U9JTwK3AMODrjSpXu+joSAuIDxqU7tdbr7Opd+xYmDULrr8eNtrIwdTMrC80soZ6DxBFj60OCvnSfLPuvvvCIYfARRe5qdfMrBGaMlNSf9FfZkoaNQqmTOm6rum0aSmgDhuWmnpHjkxB17VTM7PeKTdTUrNyqABIWg/YHlgdeB64PSLmNrNM/VEhX5q3444wdy488URzymRmNtA0a4HxQZLOBB4Dfg/8grQ+6mOSzpDUtBmc+hsvy2Zm1hqaFbhOBg4ndT4aAayY3X892/6tJpWrX/GybGZmraNZTb6HAN+IiB/mtj0O/EBSAJ8jTfBgFXhZNjOz1tGs5dsWAHtFxF9KPLcbcEVENH1yvFbvlORl2czMGq+llm8DHgAOKvPcQcD9DSxLv+Vl2czMWkezmnwnAZdkk+FfCjwNrA18EhhD+WBrmfyybBdc0DnWdPx4OPXUJhfOzGwAakpAjYjfSXqJ1DnpNGAwsIi0lNvuEXFdM8rVn3hZNjOz1tLwgCppMLANMCsits+GyKwJPBcRSxpdnv4qP1evl2UzM2u+ZuRQ3wRuBEYCRMSSiHjGwbS84nl6jz4aVlnF+VMzs1bS8ICaBc4Hgbc1+tz9UWGs6ZQpqUfvlClw+eXwsY957KmZWStpVi/fE4ATJb27SefvN/JjTQcPTvcXXwz//nd6buLE1Mw7cWJ67PypmVlzNGsc6gzSzEirA0+Sevl2KUhEbNPwghVphXGoHmtqZtZaWm1y/HuAWU06d78ycmTKjeZXknGu1Mys9TRr2Mz4Zpy3PxozBsaNS828hbGm48bB/vs3u2RmZpbX0IAqaUVgD1Jz71PADRHxdCPL0N8UOhsVxpqOHJkeT53a7JKZmVlew3KokjYBricF04JXgANKzenbCpxDNTOzYq0wl+/3gSXATsAQYAvgLtJaqFZCRwcMHerxpmZm/UEjA+r2pCXbbo2IBRExG/hfYLikdRtYjn5j8mQ45pilx5sefLDHm5qZtZpG5lDXBR4u2vYfQMA6pJyq5cyeDXfd1XWt05Ej0/y9Hm9qZtZaGj2xQ+MHvfYz+WkGhw1Lzbtjx8KsWSlnOmUKbL55s0tpZmbFGh1Qr5X0TOFGZ630hvz27LkBp3iawaOPTkNkPL2gmVnra2ST78kNPFe/lJ9mEGDSpHS/337w8supudfTC5qZtaamTD3YXzR62IyHyJiZtb5WGDZjFXR0dOZM8zxExsysf3BAbQGF3OnRR3tJNjOz/qpZk+NbTj53mh8iM2wYnHGGc6ZmZv2Bc6gVNCqH6typmVn/4Rxqiyk13jTPuVMzs/7FAbUJPN7UzKz9OIfaBB5vambWfpxDraCvcqjOmZqZ9V/OobaQkSOdMzUzazcOqE0wZszSOdNx4zqbgM3MrP9xDrUJCp2O8kuyTZgAU6c2u2RmZtZTzqFW4ByqmZkVcw61ifJjTkeO9LhTM7N25IDax4rHnJ55Jkhw6KEed2pm1k4cUPtYfszp4MHp/tJLISLlUFdYId173KmZWf/mTkl9bPZs2HHHrtt23BHmzoUnnmhOmczMrP5cQ+1DXuPUzGzgcEDtI17j1MxsYGmbJl9JuwOnAYOAcyLi1KLnlT2/BzAfGB8R/+ir8niNUzOzgaUtxqFKGgQ8AHwEmAPMAMZGxL25ffYAJpIC6rbAaRGxbaXj9mYcqseampm1p3Yfh7oN8FBEPBwRbwCXAHsX7bM3cFEktwOrSlq3rwrk+XrNzAaWdgmo6wP5PrNzsm217oOkIyXNlDTz2Wef7XGBTjjBuVMzs4GkXXKoKrGtuC27mn2IiLOBsyE1+fa0QIUcaX6+Xo81NTNrX+0SUOcAG+YebwDM7cE+dTV2rAOomdlA0S5NvjOAzSRtLGk54CDgiqJ9rgAOUbId8HJEPNXogpqZWXtqixpqRCyWdCxwLWnYzHkRcY+ko7LnzwKuJvXwfYg0bOawZpXXzMzaT1sEVICIuJoUNPPbzsr9HMAxjS6XmZkNDO3S5GtmZtZUDqhmZmZ14IBqZmZWBw6oZmZmdeCAamZmVgcOqGZmZnXggGpmZlYHDqhmZmZ14IBqZmZWB22xwHhfkfQs8Fizy1HCmsBzzS5EEwzE6/Y1DxwD8br76zVvFBFrFW90QO2HJM0stVp8uxuI1+1rHjgG4nW32zW7ydfMzKwOHFDNzMzqwAG1fzq72QVokoF43b7mgWMgXndbXbNzqGZmZnXgGqqZmVkdOKCamZnVgQNqk0jaUNI0SbMl3SPp89n21SVdJ+nB7H613Gu+JukhSfdL+mhu+1aS/p099zNJyrYvL+m32fY7JI1o+IWWIGmQpLskXZk9HgjXvKqkSyXdl/3Nt2/365b0xey9PUtSh6QV2vGaJZ0n6RlJs3LbGnKdkg7NzvGgpEMbdMnlrvkH2fv7X5Iul7Rq7rl+f81ViQjfmnAD1gXen/28CvAAsDnwfeCr2favAt/Lft4c+CewPLAx8B9gUPbcdGB7QMCfgY9l248Gzsp+Pgj4bbOvOyvL/wEXA1dmjwfCNV8IfCb7eTlg1Xa+bmB94BFgxezx74Dx7XjNwM7A+4FZuW19fp3A6sDD2f1q2c+rNfGadwOWzX7+Xrtdc1W/l2YXwLfsDwF/BD4C3A+sm21bF7g/+/lrwNdy+1+bvRHXBe7LbR8L/CK/T/bzsqQZSdTk69wAuAH4EJ0Btd2veSgpuKhoe9teNymgPpF98C0LXJl94LblNQMj6Bpc+vw68/tkz/0CGNusay56bh/gN+12zd3d3OTbArLmjPcBdwBvi4inALL7tbPdCh9QBXOybetnPxdv7/KaiFgMvAys0ScXUb2fAscDS3Lb2v2aNwGeBc7PmrrPkbQSbXzdEfEk8EPgceAp4OWI+AttfM1FGnGd5Y7VCg4n1Thh4FyzA2qzSVoZ+APwhYh4pdKuJbZFhe2VXtMUkvYEnomIO6t9SYlt/eqaM8uSmsd+HhHvA14nNQOW0++vO8sZ7k1q4lsPWEnSpyq9pMS2fnXNVarndbbk9Us6AVgM/KawqcRubXXNBQ6oTSRpMCmY/iYiLss2Py1p3ez5dYFnsu1zgA1zL98AmJtt36DE9i6vkbQsMAx4of5XUrUPAHtJehS4BPiQpF/T3tcMqUxzIuKO7PGlpADbztf9YeCRiHg2IhYBlwE70N7XnNeI6yx3rKbJOgntCRwcWZssbX7NeQ6oTZL1ZjsXmB0RP849dQVQ6Ll2KCm3Wth+UNb7bWNgM2B61pz0qqTtsmMeUvSawrH2B27MvckbLiK+FhEbRMQIUkeDGyPiU7TxNQNExDzgCUnvzDbtCtxLe1/348B2koZkZd0VmE17X3NeI67zWmA3SatlLQK7ZduaQtLuwFeAvSJifu6ptr3mpTQ7iTtQb8COpKaKfwF3Z7c9SHmCG4AHs/vVc685gdRD7n6y3nDZ9tHArOy50+mcAWsF4PfAQ6TedJs0+7pzZd6Fzk5JbX/NwJbAzOzvPZXUQ7Gtrxs4GbgvK++vSL082+6agQ5SnngRqQY1oVHXScpVPpTdDmvyNT9Eym/end3OaqdrrubmqQfNzMzqwE2+ZmZmdeCAamZmVgcOqGZmZnXggGpmZlYHDqhmZmZ14IBqbU3JI5JC0qbNLk+1JI3PyrxyhX12yfYp3F6UdIukXZtRnjKvu6mojIXbN4quYVS9y1xl+YZImifpgzW8ZhlJZ0h6Oiv7t6p4zZcl3dCrwlrLc0C1drc9aRJvSJNJtKODSdf5KWABcI2kLZtaoq6mkcqXv53f1BJ1mkia0emvNbxmX9JqKF8jXcs5VbzmLOD9knaptYDWfyzb7AKY9bGxpLlzZ2U/T2pucfrEvyJiFoCkv5IG1x8BHNPUUnV6ISJub3YhiklahvQ7OqXGl74LeDEizqv2BRHxqqQ/kAL4TTWez/oJ11CtbUkaBHySNI3ZecDmkt5TtE+hKfPdSgtBv660SPK+RfvdpLRA+DilRY9fkfRnSRvk9inZfFl4be7x9pKukDQ3O9/dkg6uxzVHxGuktXVH5M73GaWFvhdKekzS8UXl61F5smbMBZL2qkfZc8cdorTY9Lzs+DMk7ZZ7/vCsnINz2+ZKei6bwq7QLPuSpCMqnOpDpJVKLstvlDRIaUHsB7Lf2RxJF2TP3UQKwKvlmq9HKC0gf05WjgWSHpf0y6Lz/QHYU9Lqvfj1WAtzQLV29iHgbaSJ+C8lTZM2tsy+F5MC7z6k6eIuyQfLzLbAscBxwJGkCe7P7kG5NgJuBT4D/A/pg/Z8SeXKVrXsS8SGwLzs8ZeBn5OmO9wz+/kUScf2pjySvkmaWnDviLii+2Jp2fytm/1/CRwGTCb9PZ4ArpK0Y/b8zcAQ0u8fSZuRlkcbSlrMGuC9pAnV/1bhPLsCD0TE80Xbf5Fd2+9Iv7PjgJWy544mzcH9Mp3N108BPyZNJ/pF4KPA11l6FZS/A4OBnbq5fuuvmj33oW++9dWNVCt9EVgue3wVRQt9A+NJH3yH57atQVp+6qjctptIH6Kr5bZ9IXvtitnjXbLHo4rKcRNwaZkyipR6+QVpAvDicq1c4foK53tvdoy1gdOybXuSAsxrwElFr/s2KeAO6kl5gO8ArwK7VPE3uCl7XfFt2VK/M2Akaa3cQ3PHWIbUZH9tbttc4EvZz4cDdwK3Ff5mwOdISwVWKttfgN8XbXtXVp7PVXjdt4DnirbNAiZW8ft4FJjc7P8N3/rm5hqqtSVJy5NqN5dHxBvZ5g5SU+h2JV7yl8IPkWosz9B1aSmAGRHxYu7xvdl9TQscK62U8TNJj5FqzYtINd531HKcnLuzYzxNmqT8KxFxJan2tBLw+6La4Y2kmvsGPSjPj0m1tI9GxE1Vlu9GYOv8LdKi0aVsTQrqvy9siIgl2eMdc/vdQmdNb2dSrfXmom23dFOudYDniraNye4v6Oa1xe4GvizpaEmV/o7PZee1NuSAau3qY8CqwNVZfmtVUm1pIaWbfV8qevwGacWL7vahxH7duQA4EPgBafmprUm16VqPU3BQdoxNgVUj4vvZ9jWz+3voDJSLSL1uoXNdyVrKsx+pNji9hvK9GBEz87cK+64LvBZdl/+C9GVhSPZFCVLw3DHLme5Eatr9G50BdUcqN/dCur6FRdvWAF6PiFe6eW2xY0nN6icC90t6UFKpXuUL6fnf2Vqce/lauyoEzd+XeO4ASV+MiDfrfM4F2f1yRdtXJ6sJSVoB+DhwbEScVdgh63HaU/dE1su3SGGx7T1JAanY/T0oz57AlcBFkj6V1R7r6SlgZUlDioLq24D5EVEIgH8j/V4/AmycPV4ErJ91YHob3QfUF0hfuvKeB1aSNLSWoBoRL5GamT+XdXw7HviNpH9FxL25XVeldRZBtzpzDdXajtLkA3uSmnjHFN3+j/RhO6bsAXpuTnY/MleWDYF35vZZHhhErmYkaRWgrj1lM7cB/wXWK64hZrdXe1Cef5Nq/3uSxlbW2wxSDnP/XHmUPc434f6b1GJwAnBfRDybBbVZ2bbXSM2wldxPCsZ5N2b3h/So9EBE/Av4Munz9V2F7dmXlOGkXtjWhlxDtXa0N6kX6GkRcUf+CUm3kj5wxwLX1/OkETFH0gxSL9r5pA/Ur5OrkUTEy9k+J0p6hdQB56ukDk9D61yel5Rm8TlN0kakZtJlSLnRMRGxT0/KExHTJe1JmkDilYj4Uh3LPFtSB3C6pKGkRaSPIAWmz+b2W5L9LT9O6kBV8DfS2NLrKuRpC24F9pG0TKGmHRH3Szob+JGktUm/s1WB/SOi7MQgkm4BLicF9MjK/Dpdm8bfSerUdWs35bJ+yjVUa0djgQeLgylARCwiDYfYN5ePq6dxwOPAr0m9Yb9NqgkV7/MIcBGpV+4fsp/rLsunHkmqVf6RVGs/mK7NoTWXJyJuJs0YNFHSSXUu9hHAhcA3szJvBOwZEcWdjArXcHOJbd11SCI79orAB4q2H00aNvMp4Grgp6SafiW3kXpCX0p6f60JfCwi5uT22Z30e76rirJZP6SI4qFSZmYDg6Q/AnMios9nlZJ0G3BVRLTjbF2GA6qZDWCStgZuADYqGhJV7/NsC1wDbJzleq0NucnXzAasiJhB6pE7vI9PtTppsoqX+vg81kSuoZqZmdWBa6hmZmZ14IBqZmZWBw6oZmZmdeCAamZmVgcOqGZmZnXw/xHb7BSin67NAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Create a new figure for the quantile plot\n", "fig, ax = plt.subplots(figsize=(7,7))\n", "# Plot the ranked data against the plotting position\n", "ranked_df.plot(x='peak value (cfs)',y='cunnane_plotting_position', \n", " linestyle='-', lw=1, \n", " marker='o', markerfacecolor='white', markeredgecolor='b', \n", " color='b', ax=ax, legend=False)\n", "\n", "# Label the axes and title.\n", "ax.set_xlabel('Annual Peak Flow (cfs)', fontsize=15)\n", "ax.set_ylabel('Cumulative Frequency\\nProbability of value $\\leq$ given value (CDF)', fontsize=15)\n", "ax.set_title('(Fig. 2) Skykomish River Peak Flows - Quantile Plot', fontsize=15);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also create a theoretical normal distribution based on our observations. By plotting the theoretical CDF next to our empirical CDF, we can see how close our observations match a normal distribution visually." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# To create the theoretical CDF, we need the sample values, the mean, and standard deviation of our data set\n", "sample_values = Skykomish_data['peak value (cfs)'].sort_values() # sort our data\n", "sample_mean = Skykomish_data['peak value (cfs)'].mean()\n", "sample_std = Skykomish_data['peak value (cfs)'].std(ddof=1) # Note our ddof=1 here\n", "\n", "# Create a theoretical normal CDF based on our sample values\n", "normal_cdf = stats.norm.cdf(sample_values, sample_mean, sample_std)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdQAAAHSCAYAAABVfjpxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACDKklEQVR4nO3dd3xT9frA8c9D2RsFBEWmyFQRUNGLCooLcYCzKIKXqyKC6yoqKENB3KKAIhcUBxZERf2p1w0iCgqIV5bIFBBBVtlltM/vj+9Jm4YkTdo06Xjer1debU5OzvmeNM2T73q+oqoYY4wxJm9KJLoAxhhjTFFgAdUYY4yJAQuoxhhjTAxYQDXGGGNiwAKqMcYYEwMWUI0xxpgYsIBqghLnfyLS02/bTBHRILeHRaSX93vFfCrPOBH5TUT2iMgOEZklIp0C9rlfRL6O8HgVROQxEVkuIvtFZLOIfCsivf32yfM1iUgH7xgtc3uMvBCR+t75u0TxHBWRfrk419CA98UmEflYRE4O2C+hr4lfOfzfz4dFZJWIPC8ilfPhXGtF5Jkon9NBgv+/HQ64hndjXV6TOyUTXQBTYF0LVAPeDtg+AxgYsG09cBA4E9iXT+UpB4wBlgOlgd7Af0XkbFWd6+0zDhgoIh1UdWYOx3sPOBUYDiwGagLnAJ2BibEvfsL8hfu7/Ban8+0ELvZ+rw88CnwpIs1Udbu3/WevTKviVKZwfO/nksBpwGPA8cDViSxUgBuA1X73LXlAAWUB1YRyJ/Cmqh4K2L7dL4AF2pJfhVHVnv73ReQzYA3QHZjr7bNbRN4D+gMzQx1LRBoDFwHXquo0v4emiojEuOgJpaoH8F6fODns9/6YKyJrgTm4IPu2V6Zd8SqTiJRT1f1hdvF/P88WkQrAYyJSQ1Xz7f0cpV9VdXGiC2FyZk2+5ggicgJwFhBxU1Kw5lERqSsi//WaVNd4+7wrIjPzWkZVTQdScbVVf+8BXUTkqDBPr+r93BTkuGG//XvNymkicrmIzBOR14Ls87qI/BzmGNeLyEER6ePdLy8iL3pNpGnecS8MeM5M77W72Xst94jImyJSRkROF5GfvG0zRaSu3/OOaPL1yr5ARPZ6zec/isi5AcVMEpHHRWSLiPwtImNFpEy41yaE/3k/j/c7f7YmX6+p/Z0gr9MzIrLO9yVHRMqKyFMisl5EDojrkugc8Jy1IvKsiDwiIhuAXVGWd4H3s753vLoiMkVEtovIPhH5XESaBJzzCRFZ5L3+G0RksojUCncSETlOXHfDVyJSPsoyhiUi53l/0zRxXRkvBfxf/iEiA/3u3+b9Pe702/ZvEfnT735vEVni/S9v9f5mLWJZ7qLAAqoJ5nxgL1kfhv5EREr634IdwPsQ/AhoBvwTuBdX6z0jt4USp6SIHC0i9wCNgVcDdvsBKAWcHeZQy3HXN0pELhSRshGe/xFgGHCFqn4ETACuCfiwqghcBRwRaL3HewFvALeq6jhv83+Am4ERQFdcE/onItI+4OntgJ64GvgAXLP8aO/5LwA3Ag2B8WGuoRHui9I3wGW45sSPgcAvIP8GjvWO+TRwG3BXqOOG4Qvua8LsMwX3JaiCXzkFuAZ4x+9LzrtAL+Bxr+zzgI9EpFXA8boD5wJ9geuiLG997+cmcV/KZgNNgD6417sC8JWIlPN7Tk2vTJcCd+P+Bt+ISFKwE4hIfWAWsBLooqo5dZMkBfzPhfzcFpHmwGfAVtz7cAju9fD/cvwd2f8/zgHSgmz7zjvmObjulLeAS3D/zz8AVXIod/GjqnazW7Yb7gN5XpDtM3H9N4G3krgPOgUqevte6t0/3e/5xwGHgJm5LNf1fufcA1weYr+1wIgcjpXsHUNx/b+zgFsA8dsn85pwH5i7gQ5+j1fGBeab/bb9EzgAHO3d7+AdoyXuQ/kAcL3f/s2ADKCn37YSuH7dzwNe+1Sgit+2d7xjn+O3ra+3rbx3v753v4t3/2pgWw6vjQKzArZ9AMzN4XlDcR/kJb1bI+BLYCFQxm+/zNfEu18DOBzwupzp7dPWu3++d//cgHPOAqYF/O3/AspG8H6aiWvRKAmUwQWUDbhALbj+1G3AUX7PqYbrJ74jxDGTcO/zwL/LWuAZ4ARgnXfe0jmUz/c6Bd6GB1zDu373pwArgCS/bdd6zzvTu3+bdw0lvPvrcOMTNnn3xfs73uHdvw9YkJv/2eJ2sxqqCaYW7h8qmG9wgzcyb6p6OMh+p+H+QX/ybVDVP8lqUsuNz73jXgJMB6aISIcg+23FXUNIqpoC1MMFwCnAibgvEoGDsACewwWqi9RvsJO6vkBfrcmnF/CRqm4LOMadwChc0Jjit/003AdYZl+uqmZ49wNrqPNVdaff/ZW4LwOzA7aBq10GswioIq5Z+kL/WmGALwLuLwXqhNjX39G4L02HvLKcCnRT15cblLq+ym/IXpu8DlilqvO9+51wTfTfB7SOfA20DTjk16qaFkFZAbp5ZU3DBee1wA3qIkkn3BeCXX7n2417D2eeU0QuEZEfRGQn7ovBBu+hEwPO1cQ7x2zgOlU9GGEZryf7/9xLYfY9HZiurkvE5z2vXL7303e4L4OneLXlOsBTQHVx4wta4P6O33n7/wKcKm4E9DkiEtjNYjw2KMkEU5bQo3V3+H3IhVOL4IOUtgCVclMoVd0B+M79mYgcixtFek7Argdw15DT8bbhmmZfE5FSwCvAzSLyhKr6N3dfhfsQ/SnIYSYCM72mVHC1nM5B9rsKF2C+CtheG9ijRzb7bQbKi0gZv2CUGrDPQWC3F4D9t0GI61fV5SJyBfAg8ClwSESmA3dp9kE4wc4VSdP4TlwgSgJOwdXK3haRfwSUM9AU4CVxU1b24Jp7J/k9Xh33ngocJAeQHnB/cwTl9PkGeAAXcP7w3mP+52xH8GbjrwFE5DRc18Z04Angb1xtcC5Hvl5n4ZrWJ4T4EhrKEo18UFJtAq5fVdNFZJt3blR1qYhsxb1XdwCLVXWdiPzibSuD+/sv9vb/SkRuxn0pvAvYIyJvAfer6t4orqPIs4BqgtlODjW8CGzCNeUFqoGrDcTCQty390BVcdcQMVU9JCLP4/oym5K9/7gLrp/xDRG50T8wqOosEVmB69sUYCNH1u7A9VW+DPyfiFyiWSNP/wIqikj5gKB6DLAvXM0ut1T1E1wfbRVc0/woXF9ssNcyWof9vnD9KCL7cX3G1wBTwzxvOu71uQL4A1fD9t9/O/AncGUEZYhmWkm4L4jbccHysSCP7fZ+dsV9SbxOfe2lIvVCHO81XM3wAxHp5N96E0N/4fp0M3l9uUeT/X9iNi54puJqzZDVt1oW+D7gff468LqI1MDV6p/HDfh6MB+uodCyJl8TzHKgQR6PMQ+oJSKn+zaIyHFAmzwe13cswfWzrQnYXgI3EOb3MM+tFDCoxKex9zOwhrMI18zcBTc4I9CruIB6E/BGQHObzwZcP2Bj4F2vRgzudVL85j1613Y12ZtyY05Vd6rq27hg1jyfTvMWsARXCwxXlh24LyLXebdlqvqr3y5f477k7VHV+YG3fCr717jmzyVBzrnc26cccMgXTD03hDlmH9yXs/+KyEn5UOYfga4BA6K64SpP/u8nX/A8h6yAOsvbdjZZzb3ZqOoWVX3Fezy/3jOFltVQTTDfA4Mlb3PxPsXV8t4RkYeA/bgRh5txg3AAEDdd42vgfFX9NtiBRORs3KjT93EDKI7GBbB2uNGe/prgBhF9H6ZsTXCjQ1/FjVbcB7QCBuH6i44IZKr6k7ipJ5+JyC5Vvc/v4ddxCSJKkr2ZMvAYq8Vld5oFvCUiyaq6TERSgDFec+dK3OCopsDtYa4hV0TkNtwXkc9wtenGuNrjG7E+F7hpSCLyODBZRM5X1XCZrKbivpzsxA2S8fclrg/9SxF5EhekK+P+bmVV9aGYF971nd+IG7E7GldDPgY3gni21w//JXC3iIwC/g/XrHtjqAOqaoaI3ITre/9CRM5R1RUxLPNwXMvNByLyMq5/9EncALc5fvvNAp71rscXUGfjBpKBX0AVkWG45uKZuPEJp+JeA6udBrAaqglmJq556OIc9gvJ+8Z+BS5Dz2u4aR0v4wa3+M8NFFx/W7iECutxfVyP4z5UX8C9d9ur6qcB+16Mq7UuDHO8VbgpLxcAb+KCfx/ch/n5ofq3VHUW7tt+fxEZ4rd9E65m8L1fzSUoVV0GXIhLLPEfrzZ6Cy4oPwJ8iBss1UVV86OG+iuu2f05XI3wYdy0m7A1yDyaiht5OiCH/T7E/Z2r4/pUM3nvp264v9HduPfBK7gvB/lSk1fVrbgvbb/hmji/wA3eqYJ7HfHefw/g+sg/wgWasGkevffXdbiWj69E5Phw+0dZ5iW41pSauC+gw4EUjsz8tBDXV73Ce//6Bof9huuS8a/1z8PVRsfhXvfbcSO6X4hVuYsKyd5SYYwjIi8AJ6jqpTE8ZhVcCrUxqjokp/1zeY45wCeqOjw/jh/inEfhai/9VLUopS00xkTBAqoJSkTq4PpST1XVkP2RORyjD655dwWuVnQvbj5mC1X9I1Zl9TvfGbimzAaqmhrr4wc5XyXcN/e7cCNb6wcZrWuMKSasD9UEpaobxK28UpswA3xycADXHFYXN/DmJ6BTfgRTz1G4BAmp+XT8QG1wydX/AG6yYGpM8WY1VGOMMSYGbFCSMcYYEwMWUI0xxpgYsIBaxIjIUHFLMQW7hZwflw/lWCsiz0Sw3xHLvsXo/JNEJL8m/Edahi7etdUP8fjMMH8r322oBFmCrSATkQHBcix719AvxufKthRcDvu2EJGp4pajSxO3fNqQEEk+4kZESnt/51YB24MtvRfR/1UE5wz8nNgoIu9JVgrNXP0PiUhN33s2r2UsjGxQUtG0k+BzSFcG2ZZfuuJW6sjJJ7i5hMVxQE9fXHICn9dw04r8U91toPD9nw7AJWaYGbD9iMxW8SIiHXHvtV9wy99twiW4Hwhc5KUCTNR7sDQu6clar3w+f+Fes9/y6bz+nxMNce+7r0WkRR5y9NbEXctM3PUUK4XtH9VE5rCqzk1kAVQ1XGIFX37RJG8yeW6zMRVqqrrU/76I7AW2BP7tCsK3fREp55d/OFcS9Z4Ut4D3ZNwCB+epqi/B/rci8iUuicFQck48EVdeHuf8fM38Pyfmisg6XIakzvitfmQiZ02+xZBfU9L1IvKaiOwSkQ2+JmGvyW6jiGwRkSfFb0Fjrzlnq4j8Q0R+9prOfpGAxbADm6Z8zUcicqWILMFlYzkjWJOviJQTkadE5A8ROSAia0RkpN/jN4nIbBHZLiI7RGSGiAQu4RXJ63CmiHzkXete7zpuCNjHV76TRORLb7/fRKRbwH7ivTZ/i8huEXmD7LXPWCgvIq+IyE7v7zVMAhabFpGWIvKJV4bdIjJNRGoF7NNARD7w/u67ReT/ROSEgH1URO4VkVEisgWX1QcRKev9bdZ7f5v/iUhnv+etxaWGHOLXnNjB75j9As7TVUR+EpH9IrJNRD4VL7m8iDQVkSneufaJyBIRuTvwmiNwDW761yC/YAqAly94MtBHvIXmfe/xwIMElj+S96Hf+/4CEfnVe//MFpEWfrv5Eu2/5vea1ZcIm/pFpL2IfOu9RttE5D/i5khHy7e0Yv0w52olIl9759ohIpNF5Bjvsfp47xNghu9avMdKicgzIrLOe99sFJHpUsSWgrOAWkSJ35qRkrWWY6Ancc1KV+G+mb4uIs/i1lT8J24VkgG4BYr9lcclPR+H+7BKxSX7zmmFmvq41G0jcd+Cj2j+ExHBpaC7HRjr7TcEl47O/zi+FUy645pFZ4lIwxzOH6geLufvv3A5gd/DfaglB9n3bVxqua64RBVTxCW/8LkTGIxbU/VqXO7ip6IsT06ewqWLuxr3+g8me1L9E7zrKQv0wK3N2gK3wo14+5TB5U5uhkt52Au3EMK34jI++bsfF4h6eNcHWeu/Po57zebh8iK38h7vimtKnIhrrjwT+DnYxYhID1x6vFW499jNuDnPvlWKjsMlF+mLex/8BxhG9GkSz8GtKjMrxOMf4JYUPDXK49YnsvdhXeBpYARuYfuauBzXvnSb53k/h5P1mv0VSQFE5B+4v+cm3Hvhbtxr9VqU1+K7HrxjBTtXDVxTbnnc9fbHpVr80guMf5G1MMAdZF0LwEPeY4/gUn7ejXuf+CfxL/y0AKxybrfY3XBNVxriVt/bp753/zW/51XGrTW5AtcU69v+EzA1yPG7+22riMv9+4TftrXAM373J3nPaxVQ3l7e9ore/Yu8+5dHeL0lcF0XvwGDA843P4rXTbzjvAJ8E6R8//TbdjQu52wf734SLtH8ywHH/NL/dY+gDPOBSUG2+/5ebwRs/wWY4nf/TVwAKu23rTFuvdBLvft9vLI39NunDm6904f8timwMOB853vbzw3YPguY5nd/KzA0yHUoLj2j7+/2J/B+lH+fgcBqv+0dvOO2DPPczwKvJeDxVt4xrvF7j28NV/4o34eHgcZ+2670jtXU7/9HgV4h/u5dwvxffQfMCHjeeRG8JkO9v1NJ73YiLknJLqB2sP8h3HqvqUBlv22ne+dK9u639O53CDjfx8Czkf4/Ftab1VCLpp3AaUFuGwP2y1z5Q1V34foyv9Xsy4+txNUUAk33e+4eXPA4Pch+/v5U1V9y2Oc8YLuqfhRqBxFp5jUXbcYFi0O4FWROzOHYgcepJiIvisgf3jEOAbeGOE7mGqfqFib/GxeIAI7H1eQ+DHjO+9GUJwKB66wu9SsDuPSH04EMv1aJNbgPYV9T5OnAz6q62vckVd2Aq9lma7bHDeLx1wlXe/k+oOXja7/jR6oJbs3TkDUpr3l5mIisxGXdOoSr5TUI0eKSV1FluYnifbhWs68o4+s7r0MeiOsbPhNX2/X/e8z2ypLTUolHk/W+X44bmHSdqoaqHZ8OfOF9VgBuFSbc+yvwvRPoF6CXuO6kk/1q50WKDUoqmvwXeQ4nNeD+wRDbygZs26NHDlD5Gzg5h/MFrjMazNGEae7y+oa+8I51Ly7tXxpu9ZjAcuZkEm41kcfIWgXndtwqOYFSA+77vy6+pu6/A/YJvJ9X4coArln8AYI3ifpWNKlN8L/DZlwTeOA2f9Vx13qIIwVbAzaco72f4Zo2n8Q1xw/DNRun4v42D+Oue0+E5/qT8F/2fNcdUTMrRP0+TA24f9D7Ge37NVA1XOvIS94tUE6r2OzEfUlS3BeljepVJ0OojVs2L9BmXNrPcIbj8nr3xf1d/xSRp1W1SK1YYwHV5EZFOXLUZ01y/kCKpAawDfePG8qZuG/2F6hq5nQCcSvZRMwbgHIprglvnN/23LTa+PqcagZsD7yf37bjaqgTgjzmG2TzF65fNdAx3vP9Bf69tuOC05W5L2Im35SqcH/ra4DRqprZFy0iuVn96FvgnyLSXoMviXc5btrW/7z7abipLJlEpFrAc2LyPsyjVNzfaChuCcJAgS1SgSL94u3zF8Hf08eQNaApKFVNw/X5DxaRxriuh1EislxVP4uiDAWaNfma3Orq+0XcCN0LcP2tefU1cFSYkY2+SfgH/M5/FmFGJoZQBvft3v84lXAfrtFajwuqgTXbbkH2zU9f4/qwFqjq/IDbWm+fH4E2ItLA9yQROQ63MHZO64p+jauh7glyfP8P5mCtGoGW44JzzzD7lCP73ycJuD6H4wbzLi4YjAhsKhaXEKIHrg/YV+PdAFTyXhefC4OUDfL+PoRc1ljVzRWdCzQJ9vdQ1ZwCarR+xM3ZzRxBLCKn4a7Z997J8Vq85u/7cK9d8xiXMaGshlo0lRSRdkG2r1fVP2Nw/P24D6eKuG/B9+G+0cei+eZL3CLGb4vIo7imvtrAOap6G+4DZA9uce6ncLWEobgP54ip6k4RmYf7xrwL1xz1IK4ZLKrpLqqa7pXlGXHTLb7DjZxuFs1xYmAo7kvNJyLyKq5Wehzuy84kVZ2Ja+Z+ADcqezCuqXaot+8rORzf97f5UkSexDX/VcYN6imrqg95+/0GXCoin+H+VstVdbf/gVQ1Q0QGAJNFZDJuEWzF9aGneAH6S+AOrw91O27kaJloXxRV3SduOtQnwEwReRHXTNkGN8jpL1yzrc9nuPf4q96o9wa4GpW/mLwPvfIdFJE1wLUishhXQ/41wqcPwCVjyMB9cdiNG1V8KW6aUG5XigrmOVyXyOfe378ibqDSItwIeYB1uNeup4jsBA6p6nwRmY6rxS70Hr8aF39CjbwulKyGWjRVAeYEud0co+PvA27C9Ye8h+vL6RxmMEPEvD6crrjpJ3cD/8X1v2z1Ht+MawqshRsEdDfuwy43WaC64wbtvIH7MvCe93tujMJNJenjHacicU4U4H14tsP9fcbjXrthuJrASm+fA7h+s99wU1tex/X/dVDVwCbfwOMrrtb9Ku51/xwXhM8ke+32fmAvLoDNI8TgGFV9G/fFoykuGLzh/e5L9NEf9+VkrHfOxbgpV1FT1Rm4ftSN3vFmAM/iXoc2/teuqlu9ctXBTam5Efde8T9eLN+HeM+tDnyFe82OjfC6ZuOmBdXAjfL+P9z7bj2RjVmImLokLB1xAT8F9zp+h2v2Pujtk4abjtUG19Q+z3v6D7iugrdxr1cb4Koom5wLPFu+zURFRIbi+h2r57SvMQWZiLyJm0t7lgZkrTImN6yGaowprm7B9eV+IiLxHkBmiiDrQzXGFEte8+QZiS6HKTqsydcYY4yJAWvyNcYYY2LAmnzDqF69utavXz/RxTDGGFOALFiwYKuq1gjcbgE1jPr16zN/fpEa1W2MMSaPvPzfR7AmX2OMMSYGLKAaY4wxMWAB1RhjjIkBC6jGGGNMDFhANcYYY2LAAqoxxhgTAxZQjTHGmBiwgGqMMcbEgAVUY4wxJgYsoBpjjDExYAHVGGOMiQELqMYYY0wMFImAKiKvisjfIrI4xOMiIi+KyEoR+VVEWse7jMYYY4q2IhFQgUnAxWEevwRo7N1uBV6OQ5mMMcYUI0Vi+TZVnSUi9cPscgXwhqoqMFdEqopIbVX9Kz4lNMYYEwuqyuHDh0lLS+PAgQOkpaVluwXb5tteqVIlevTokW9lKxIBNQLHAev97m/wtllANcaYKKSnp0cUvHK7LZJ9MzIyoix1MhUrPs7evXV58kkYNAiSk2P/2hSXgCpBtmnQHUVuxTULU7du3fwskzHGRCUjI+OIYJPfwStw2+HDhxP9MlCiRAnKlStH2bJlKVu2LGXKlMn8PXDb5s3n8ccft/Dmm2Vo3x5mz4bevd1xYh1Ui0tA3QAc73e/DrAx2I6qOh4YD9C2bdugQdcYY2IpPT2ddevWsXLlSlasWJHt57Zt2zKD2qFDhxJdVESEcuXKhQ1i+bWtTJmyiJThwIGS7NlDttvevRyxbc8emDsXJk+Gjh1d+Tt2hIkToX9/C6i59RHQT0SmAGcAO63/1BgTT4cPHw4ZNFevXh1xsIxnAAu2vWTJkogEa/QLvN6sIBcs2Pm2bdoUPigGbgOoVAkqVoQKFdxP/5v/tmrVYPNmaN8+e9nat4dly6L9C+asSARUEUkBOgDVRWQDMAQoBaCq44BPgc7ASmAfcHNiSmqMKeq2bt3KggULjgica9asCRs0jz32WBo3bswJJ5xA48aN2bSpA59+eiorV5aiSRPlwQfT6dEjsmAWDVXYt+/IILZ9e841wHDbDh48MuCFC4A1akS2X+nS0V3fW2+5Zl5fDRXc/WbNYvoyAkUkoKpq2Iq7N7r3jjgVxxhTjGzdupVZs2Yxc+ZMZs6cyaJFi0Lue9xxx2UGTP+fjRo1okKFCpn7paTAK6+4pknX7yf07u1mOV56ad4CXeBt/34oWzayGl/FinDssZEFyrJlIcaxP1cGDXJ9plmvpbs/YkTszyUu1phg2rZtq/Pnz090MYwxBUhOAbRs2bK0bduWpk2bZgucDRs2zBY0g0lPh99+gy5d4NVXs9eqZsyAK66AUqUiq8lFuq18eUhKyo9XquBISXEBdNkyVzPN6yhfEVmgqm0DtxeJGqoxxuSXbdu2ZQugv/76a7bHy5Qpw1lnnUWHDh04fPga3nuvCT/8UIIdO+C886Bbt+DHzciAlSth/nyYN8/9/OUXqFUL/vgjeL/f3r0u6JroJCfnzzSZQBZQjTHGTzQBtEOHDpx++umULVuWlBRX8wlsWgS4/npYu9YFTd9twQKoWhXatoXTToOhQ6F1azeQpmXL+PX7mdixJt8wrMnXmOJhyZIlvPPOO3z44Yf8+uuv+H8uhgqggVq2hNGjj2ymve46VxstU8YFT18AbdPGDcQJJlRwHjEiPjUtE541+RpjjJ9Vq1bx9ttvM3XqVJYsWZK5vUyZMpx55pmZAfSMM84IGkB9du92Nc5ly4I3027bBuvXu8E8kfIFzf79s/r9LJgWfBZQjTHFRlpaGtOnT2fChAl88803mdsrVPgXlSqN5O+/j6ZRI+XWW0sEDV6HD8PSpfDjj1m31avhlFNc32eoZtpogqlPvPr9TOxYQDXGFHmLFy9mwoQJvPnmm2zfvh2AcuXKcfXVV1O79r1Mm3YKEyeK3xQV97yzz84ePH/+GY47Ds44A04/Hfr0gZNPdnMjU1LiNz3DFEwWUI0xRVJ6ejrvvvsuo0aNYu7cuZnbW7duzb/+9S+6d+9OlSpVaNnSBcHA1HRdu7opKmec4W6DBrm+z2rVgp/PmmmNDUoKwwYlGVP4HDp0iMmTJzNy5Eh+//13ACpXrswNN9zAv/71L1q3bp1t/6QkSEtzwTPrGC4xweHDBSM5gSlYQg1KKioLjBtjirm0tDRefvllGjduzM0338zvv/9OgwYNGDduHBs3buSll17KDKYpKW5UblISVKnimmf9+fo+LZiaaFhANcYUanv37uX555+nYcOG9O3blz/++IMmTZrwxhtv8Pvvv3PbbbcdkdZv0CA3xSUtDfr2he7d3RSXQ4fcz9693T7GRMP6UI0xhdLOnTt56aWXeO6559i6dSsAJ598Mg8//DDdunUjKUQ+vREjsveZDh/ufl51FezcaX2fJvesDzUM60M1puA5fPgwY8aMYdiwYaSmpgJwxhln8PDDD3PppZfmuBpLuD5TS+tnImF9qMaYQm/WrFm0bt2ae+65h9TUVM455xy+/PJL5syZQ5cuXbIFU/9+0pYt3TJeY8e6tTRD9ZkakxfW5GuMKfD++usvBgwYwFtvvQVAgwYNeOGFF7jsssuC7h8sdd8NN8BRR8GDD9p8UZM/LKAaYwosX/Pu4MGD2b17N2XKlOGhhx5iwIABlCtXLuTzAvtJO3aEyZPdHNEHH4R69Wy+qIm9hPWhishJwOlALaAssB34HfhBVXckpFABrA/VmMSZNWsWd9xxB4sXLwbgsssuY9SoUTRs2DDs8/74Axo2tH5Sk38KRHJ8EWkI3A7cABwDZACpwAGgKlAeyBCRb4EJwFRVzYhnGY0xibV161buueeebM27L774Il26dMncJ3DB6AEDoFw5mDDBJao/5hhb/swkgKrG5YYLkPuBL4E+wMlAUsA+1YFLgFHAemA50D5eZQy8tWnTRo0x8fPpp59qrVq1FNCyZcvq0KFDdd++fdn2eftt1QYNVL/5RvXgQfezVi3V5s1V33pLdd++4Ps0aOC2G5NXwHwNFueCbcyPGzAGqBfF/iWA64Dr4lXGwJsFVGPiY8+ePXr77bcroICeffbZumrVqqD7Nm/uAqS/b75RbdEi+7a333bbSpRwPy2YmlgJFVBtHmoY1odqTP778ccf6dGjBytWrKBUqVKMGDGCe++994jEDJs3wyuvwNChcOCA9Y+axLF5qMaYAkVVef755/nHP/7BihUraNmyJfPmzaNOnfs55ZSkzPmjw4fDTTdB06awcSM0bmzzSE3BFLeAKiJfiEiTgG3niUiFUM8xxhRNe/bsITk5mXvvvZf09HTuuece5s2bx9Klp2TLszt6tEvGkJ4Oq1bBuHGuhtq7t+XeNQVPPEf5dgKq+O6ISBJugNJpwM9xLIcxJoF+//13unXrxpIlS6hYsSKTJk3iqquuAoLPH337bTdn9Kij3DZbd9QUVHHrQxWRDKCdqv7k3U8CDgFtVbVABlTrQzUmtj744ANuuukmdu/eTbNmzejd+0tee+24zMC4bJnNHzUFn/WhGmMSJj09nYceeoiuXbuye/durrnmGu67bwFjxx6XrXnX8uyawizeqQeDVYdtmLExRVhqairXXnstX375JUlJSTz55JPce++9nHSSHNG826+fy7k7ebLl2TWFT7ybfFOBw36bqwfZBoCq1oxLwcKwJl9j8mb9+vV07tyZxYsXU7NmTaZOnUqHDh2A0MuolSkDzZtn9Y8OGmT9o6ZgKQipB4fF8VzGmARbtGgRl1xyCX/+eQ7Vqn3G1q3H0q+f8NBDoAqVKwdPD9i8OXjpe40pVOIWUFXVAqoxxcSMGTO48sor2bXrUmrXfpXJk8tmW0atfHm46y5bRs0ULbZ8mzEmpqZMmULPnj05ePAgNWu+wOTJZYMuozZ0KDRpYtNfTNER99SDIiLABUA73IozAJuBOcBXWoByIVofqjHRefbZZ7nvvvsAuOuuuxg9+nnS0sSmwZgipSD0oSIipwJTgUZAOrAVEOBoryy/i8j1qvpLPMtljMkbVWXQoEGMHDkSgGeeeYZ7772Xr74SW0bNFBvxTD14DPA5bgm3zkBFVT1WVWsDlYBLgYPA5yKS8BG+xpjIqCp33303I0eOJCkpibfeeot///vfiAgdO0L37tnTBHbvnj3AGlNUxDOxQ39cMD1bVT9X1YO+B1T1gKr+FzjH26dfHMtljMklVaV///68+OKLlC5dmvfee48bbrgh83Ffnt3+/V0zb//+WXl4jSlq4jkP9SfgPVV9Mof9HgCuUtXT41KwMKwP1ZjQVJU777yTMWPGULp0aT744AMuueSSbPuEmmtqfaimMCsIqQdPILIk+Au8fY0xBZSqctddd2ULpqmpl9CyJZnLrl1zjaUSNMVLPANqFWBnBPvtBirnc1mMMbnkC6ajR4+mdOnSTJ8+ndTUS45Ydu2HH+DKK22pNVN8xHOUrxB53l7Jz4IYY3JHVbnvvvsyg+n7779P586dadnyyGXX3nrL9ZmOGGFzTU3xkOhcvsGUBKqoalK+FyoH1odqTHbDhg1j6NChlCpVivfff58uXboA1ldqipeCMA/VUg8aU4i98MILDB06lBIlSpCSkpIZTFNSoEqV4Hl5ra/UFCeWy9cYk6P33nuPu+++G4AJEyZw1VVXAS6YDhoEfftaXl5j4hZQReRoYDwwXlU/D7HPRcCtwO2q+ne8ymaMCW3x4sX07NkTgCeffJKbb74587ERI7L6Tlu0yOorrVIFxo61vlJTvMRzlO/dQEPgizD7fAE0AP4djwIZY8LbsWMHV155JXv37uWGG26gTp37s02NWbbM1UjBBc/Fi11f6s6dFkxN8RPPgHotMC5c8nvvsVeAK+JWKmNMUOnp6SQnJ7Nq1SpOPfVUOnWayMMPS7apMTbP1Jgs8Qyo9YClEey3DKifv0UxxuTk4Ycf5vPPP6d69epMnz6dZ54pk9m8W6qU+9mvn1vf1OaZGhPfgLqfyBI2VPT2NcYkyLRp03jiiSdISkrinXfeoV69etmad32GDIFNm7Ln6rV5pqa4iue0mZ+By4FPctjvCiJLUWiMyQeLFi2iV69egFuGraM3F6ZZs+BTY5o3d32nxhR38ayhjgV6i0jPUDuIyE3AzcCYuJXKGJNp+/btXHnllezbt48bb7yRu+66K/MxW4rNmPDiOQ/1fRF5AXhNRPoBnwHrcOkI6wIXAW2B51V1erzKZYxxfIOQVq9eTevWrRk/fjwiWVlA/Zdi86UR7N0bPvggcWU2piCJW+rBzBOKXIabQnMWUMbbfAD4Hhilqh/HtUBhWOpBU5w8+OCDPPnkk1SvXp0FCxZQt27dbI9bekFjnIKQehAAVf0/4P9EpCRwtLd5m6rmlOPXGJNP3nnnHZ588kmSkpKYNm3aEcEUoG5dSy9oTDjx7EPNRlUPq+pm72bB1JgE+fXXXzOzHz377LN06NDhiH1SUmDfPujVK3sfaq9eNkXGGJ94ph7sAbytqhE3DonICUBtVf0u/0pmTPHlPwjppptu4s477wy634gRMGVK1hSZZcugQQPIyLApMsb4xHP5tl+AqsCbwLuq+r8Q+x0NXAxcD3QAeqvqO3EpZADrQzVFWXp6Op07d+aLL76gTZs2fPfdd5QrVy7ovtZ/akyWhPehqmorEbkO6A8MEpE9uKxIW3GDkqri8vjWBXYAbwF9VPXPeJXRmOJk4MCBfPHFF9SoUYP3338/ZDAF6z81JhJx7UNV1amq2h5oDNwP/IJbcLwCsBl4HVc7ra2qd1swNSZ/TJ06laeeeiozE1KwQUg+1n9qTGTiPsoXQFVXAasScW5jirv//e9//POf/wTgueeeCzoIyUcVhg2z/lNjIpGQgGqMSYxt27bRtWvXzEFI/fv3z3xMFf78E+bNy7rNn++WYmvf3vWf+gKor//UGJMlYdNmjDH5KyWFbGuXvvWWy4S0Zs0a2rRpw4gR4/jiC+Gxx+Dyy+HYY6F1a5gwAUqXhrvvht9+c7l6bYk2Y3JWZGqoInIx8AKQBExQ1ScCHq+CG+hUF3fdz6jqa3EvqDFxkJLi+jcnTnS1y9mz4cYbM9i48SbKlLmdLVsuo3nzkrRpA6edBj16uPVN69YFv2yDgDtO797Zj9W7t5tKY4zJEvfUg/lBRJKA34ELgA3APCBZVZf67TMQqKKqD4hIDWA5UEtVD4Y6rk2bMYVVy5YuQPqPyp0xAy6/fBf9+2+kR4+mNGkCJSJso0pJcQHUl8N30CDrPzXFV8KnzeSz04GVqroaQESm4JaB81/QXIFK4rJ9VwS240YYG1PkBFu7tH172LevEo8/3jTq4yUnWwA1JicJ7UMVkeYi0kNEBopILW/bCSJSKcpDHQes97u/wdvmbwzQDNgILALuUtWMXBbdmALFv7+0SROoVMn6PY2Jt4QEVBGpKCLv4ALbBOAx4Fjv4ceBIdEeMsi2wLbsi3DzXo8FWgFjRKRykLLdKiLzRWT+li1boiyGMfHn6y8dPdplMxo3DkqWhJ49Ndu80d69lUGDgv2rGGNiIVE11Odwy7d1AiqRPSB+ikvuEI0NwPF+9+vgaqL+bgbeV2clsAY4ou1LVceraltVbVujRo0oi2FM/I0Y4QYMdezoprZ07AjTpsH+/WlcfvlaypTJoG/fw4wYIdZsa0w+SlRA7QY8oKozgMBMoH8A9aI83jygsYg0EJHSuDzAHwXssw44H0BEjgGaAKujLbgxBU2o/tJt28qwZ08Dpkx5l2XLSlowNSafJSqglgO2hXisEkcG2bC85d/6AZ/j8gO/o6pLRKSPiPTxdnsMOEtEFgFf4wL61lyV3pgCxJdn19/s2VChwjaSk5O59tprE1MwY4qZhEybEZGZwEZV7e5NeTkEtFXVn0XkDaC6qnaOe8EC2LQZUxgcf7yb/jJpUtY80V69YOvWbWzYUIJq1aoluojGFCkFbdrMw8BXIvIVMA03gKiziNwDXA2ck6ByGVPobNzogqkvz26zZjB8OPTqdRTVqtkgJGPiJSFNvqo6G9efWQY3nUWAYUBDoJOqzktEuYwpTHxTZcqXhzp1YPFitzbp4sXufrNmFkyNiaeEJXZQ1e+Bs0WkHFANSFXVfYkqjzGFiX9qwQ0bXBOvf5Nv797KiBEWUI2Jp4QEVBFpHmRzVfFLIuqfNtAYk53/VBlw805vuQVWr1YaNTrIiBFlbFSvMXGWqEFJGRyZeCEbVU2KU3FCskFJpqBKSnJJHEqVytrmllRT0tOtZmpMfipog5I6Btl2FHChd7srvsUxpvBISYEqVVzTrn/y+9mzoWlTJXjiMGNMfktIQFXVb0M8NF1EhgPXAh/HsUjGFAq+vtO+fY9cUu3mm9MZOTLhDTvGFFsFcbWZGcD7iS6EMQWRf99pixZZU2UqVUrn5ZeTrN/UmAQqcOuhishzwFWqGm36wZizPlRTkGzfDjVqWN+pMYkWqg81UavNvBPk9oGI/IbrP30pEeUyJpH8l2Br2dLdT0+H//4XrrsOGjZ0ATX4smwWTI1JtETl8q0R5FYG+A64TFWfTFC5jEmIwCXYRo+GAQNcAB06FDp0gDVr4Pnn3RzT7MuyuecaYxKrwDX5FiTW5GvipWVLF0T9R+3OmAF9+sDy5dn3vf32Wbz1Vl327q1L06bKI49Y36kx8RSqydcCahgWUE28hJ5X6pp9fXbs2EGTJk3YsmULb7zxBj169Ih/YY0p5gpUH6oxJrtQS7A1a5Z926BBg9iyZQvnnHMON954Y/wKaIzJUdymzYjIPHLIjuRPVU/Px+IYU2CkpMC+fUfm4+3VC554Imu/efPmMW7cOEqWLMlLL72Ef6pOY0zixXMe6hKiCKjGFBcjRsCUKbBpU9a80gYNICODzL7R9PR0br/9dlSVe++9lxYtWiS20MaYI0QUUEVkPvAqkKKqO3JzIlXtlZvnGVOUpaTA0qWuVlqqVFYA9fWf+rzyyissWLCA448/nkceeSQxhTXGhBVpH+oS4Elgo4hMFZELxdqbjMkT31SZhg3D959u3ryZgQMHAjBq1CgqVqwY55IaYyIRUUBV1Z5ALeAO7+dnwDoRGSEijXNzYhG5TkS+EpF1IvJ34C03xzSmMPGlEXzsMTeXNNTc0vvvv5+dO3dyySWX0LVr18QW2hgTUsR9qKq6F9fs+6qINAJ6AjcBD4rI995jU1Q1LadjiUh3b/9JwHne7yWAy4FU4I2orsKYQmjZsqymXsjqPy1fHsaPd82/3377LW+++SZlypRh9OjRNhDJmAIst9Nm/NczTcetF/USsFZELojg+fcDj+FqvAAvqeo/gQbAVmBfLstlTIEVmFqwTp2spt7kZFi8GL76CurVc/cPHjxI3759ARg4cCCNGjVKYOmNMTmJOKCKSHkR6SkiM4AVwHW4IHq8qp4N1AG+AV6J4HCNge9VNR0XkCsDqOpuXF9tv6iuwpgCLlhqwV274MYbQzf1jho1iqVLl3LCCScwYMCAxF6AMSZHEQVUEZkIbALGAn8AHVW1qao+paqbAVR1O/ACUD+CQ+7E5e4F+BPwn74uwNERld6YQsJ/2bVSpdzP99+HEiVcU2/Zsu7niBGudrp+/XqGDRsGwNixYynrP+TXGFMgRdqHehJwH27azO4w+y0BOoZ53Gc+cDLwOfARMFhEDgMHgcHAjxGWy5hCwddf6q99e9i4EdavP3L/u+++m3379nHNNddw4YUXxqeQxpg8iSigRpq1SFX3AN9GsOtIwLfe6WDv95eAJGAecGsk5zOmsGjWzPWX+ie/D5ZaEODTTz/l/fffp2LFijz//PPxK6QxJk8ibfK9XkTuD/HYfSJybTQnVdW5qjrV+z1VVa8AKgJVVfUMVV0dzfGMKeg6doTu3bP3l3bvnj3AAuzfv5/+/fsDMGzYMI477rgElNYYkxuRDkp6CAg1HWaf93jERKRjYGIIVT2gqruiOY4xhYVvwJF/f6lv7qm/J554gtWrV3PSSSdlBlZjTOEQ0fJtIrIX6KKqM4I81hH4P1WNOH2LiGQAm4F3gKmq+kPkRY4fW77NxEoky7OtXbuWZs2akZaWxqxZszj77LMTU1hjTFh5Xb5tH25aTDDHAweiLM9JwH+Ai4DZXrakp0WkTZTHMaZQiGR5tgEDBpCWlkZycrIFU2MKoUgD6lfAIyJS03+jiNQABgFfRHNSVV2iqoNVtSnQGpgMdAXmichKERkezfGMKcj8l2fz70Pt1Strzum3337LtGnTKF++PE899VQii2uMyaVIm3zrAnOBSrg8vn8BtXE1zFTgH6oaZPB/lIUR6YJLDFFLVZPyery8siZfEwstW7pEDps2uXmmvuXZDhxwU2bS09Np27Ytv/zyC48++qitJmNMAReqyTeigOodoAZwL26e6dHANuBr4HlV3ZqHgh0FdMNlXjoX2A98pKo9cnvMWLGAamIhp/7TCRMmcMstt3D88cezfPlyypUrl7jCGmNyFCqgRpMcfwtRjuYNU5jKuCbe64DzgcPAJ8D1wCeqGm2frDEFQkpKVi20WTO48EKoVCn0HNTdu3czyGv3feqppyyYGlOI5TY5fl79DYzDZUbqBdRU1WtV9X0LpqawCpavNyUFzj8/9PJsTz75JH///Tdnnnkm1113XaIvwRiTB5H2oZYC7sI1zdYBjkgsqqo1A7eFOV4v4P2CPu/UmnxNNHx9pf410Rkz3JzTQYOy11wHDYL27ddz4oknkpaWxpw5c2jXrl3iCm+MiVhem3yfB24DPgZm4GqWuaaqk/LyfGMKolD5epctcwnvk5OzP9ajx0DS0tK47rrrLJgaUwREGlCvAR5U1WfzszDGFBb+faVNm7paZ8WKkefrnTdvHm+99RZlypThiSeeiF/BjTH5JtI+VAF+zc+CGFNYBPaVjhkDc+ZA166h+0r9qSr//ve/AbjrrruoX79+/C/CGBNzkQbU/wDJOe5lTDEQbG3Tt96C+fPdY8HWN/U3ffp0vvvuO6pXr87AgQMTcxHGmJiLdFDSnbg5qGuAL3HJHPypqr4c89IlmA1KMv58zbxLl7qkDOHy8oZy8OBBmjdvzqpVqxg7dix9+/bN30IbY2Iur4OSRnk/6+KSLwRSIOqAKiInEnrU8KfRHs+Y/OJr5p040dU8I+0rDTR27FhWrVpF06ZNufVWW/bXmKIk0gXGYzpfVUSaA1OB5rj+2SNOiVts3JgCwb+Zd9Ag1zc6caIbxTt7trs/YkT4Y+zYsYPHHnsMgKeffpqSJSPOq2KMKQQS9R/9ClAaN691KXmchmNMfvOfEuPrE+3f3zX/Nm8evK800OOPP86OHTvo2LEjl156af4W2BgTdxEHVG+lmX8DbXFLtnVV1SUichfwk6rOieK8pwLXq+rHUZXWmARISYEqVbI38yYnQ61aLqguXpzzMf744w9efPFFwNVORYI1zBhjCrOImnJF5HRgBXAVsBZoBJTxHq6NC7TRWEWQflNjChpf32nfvpFNiQllyJAhHDx4kOTkZNq0sWV/jSmKosmUNAPXRFsCuNnvsZ+A7lGe99/AUyLys6qujvK5xsSNf99pixauRrpsmauxjh2bczMvwKJFi3jjjTcoWbJkZh+qMaboiTSgtgauUNUMObKtahsQcR5fz0jgOOA3EVnLkdNwUNXTozymMTEX2HeanJw1RSaSYAowcOBAVJU+ffrQqFGj/CusMSahIg2oO4EaIR5rCGyO8ryLvZsxBY5/WsHKlXM/RQZg1qxZfPzxx1SsWNEWDjemiIs0oH4IDBOROcAf3jYVkerAfcD70ZxUVW/OeS9j4s9/vmn79jBsGHTvDm+/Hd0UGXApBh944AEA7rvvPmrWjLYhxxhTmEQaUB8EvsZNcVngbRsHnIDLnjQ4Nyf35qO2wY0aflVVN4nICcBmVd2dm2Makxf+faYAw4e7n1ddBTt3upppJFNkAD744APmzp1LzZo1uffee/Ov0MaYAiGi1IMAIlIa6AGcD1QHtuOC7BvRLgouIhWBV4GrgUO4wH6aqv4sIu8A61T1vmiOmR8s9WDxk5TkEt7nJq2gv8OHD9OyZUuWL1/O6NGj6devX+wLa4xJiFCpByPOgKSqB1V1oqp2V9ULVfV6Vf1PtMHU8xxwFi44VyJ7tqRPgYtzcUxj8sR/vqm/aPpMfSZNmsTy5ctp2LChpRg0ppiIdB5q+ZxuUZ63G/CAqs4AAr/3/wHUi/J4xuRJrOabAuzbt48hQ4YAMGLECEqXLp1PpTbGFCSR9qHuweXXDSea3LvlcNNtgqnEkUHWmHwVi/mmPi+++CIbN26kdevWXHvttflXaGNMgRLp8m29ODKgHgVciEtw/5iqToj4pCIzgY2q2l1EknD9qG29PtQ3gOqq2jnS4+UX60MtPmLVd7pjxw4aNmxIamoqX3zxBRdccEHsC2uMSag8Ld+mqpNCPPS8iLwEtIiyPA8DX4nIV8A0XLDuLCL34AYqnRPl8YzJFd+c0/Ll8zbf1OeZZ54hNTWVjh070qlTp9gW1hhToMViWbb3gZuieYKqzsYNSCoDjMENShqGSxLRSVXnxaBcxoTl6zcdPRpeegl69cpb3+nmzZsZNWoU4PpOLQG+McVLLJZvOw2IeqSvqn4PnC0i5YBqQKqq7otBeYyJSOCc05Il4ZZbYPXqyJdk8/f444+zb98+LrvsMs4888z8KbQxpsCKtA/1qSCbSwPNcDXNUdHMGxWRjsBMjXQSbIJYH2rRFqt+U3DLs5144okcOnSIX375hZNPPjm2hTXGFBh56kMFrgmyLQ3YANwJjI+yPF8Dm0VkGjBFVX+I8vnG5ElKSt7z9Pp79NFHOXjwIN27d7dgakwxFXGmpJieVKQFcB1wLXAiLjBPxQXXBeGeG09WQy26WraEK690OXp9eXtnz4YbboBnn42uqXf58uU0b94cEeG3337jhBNOyLdyG2MSL8+ZkmJJVZeo6mBVbYpbGm4y0BWYJyIrRWR4tMcUkYtFZLn3/AdD7NNBRH4RkSUi8m3ersIUZsuWwZAhrp+0f3/XzNu/P2zaFF0wBRg8eDAZGRn07t3bgqkxxVikfajRJL9XVc3VKsoi0gV4BailqhEnivDmsv4OXICr7c4DklV1qd8+VYEfgItVdZ2I1FTVv8Md12qoRVfLlm50r39z74wZLqgujmJhwYULF9K6dWvKlCnDypUrqVOnTuwLa4wpUPLah9ofl93Il2JwD1DR+30fsN9vXwUiDqgichQuFeF1wLnesd6O9Pme04GVqrraO+YU4Arc6jg+3YH3VXUdQE7B1BRtHTseuSxb9+5w9dXRHefhhx8G4I477rBgakwxF2mT7+XA38CNQHlVrYwLrj287Zerag3vluOijyJSWUR6isinwF/AC8AO4Hqgpqr2iPI6jgPW+93f4G3zdyJQTURmisgCEYlq7qwpWnzzTP2be305fCM1e/ZsPv30UypWrMiDDwbtZTDGFCOR1lBfBB5X1cyao6qmAZNFpAIwFtcXGqm/cTXZz4FewEequjeK5wcKNoM+sC27JG7t1fNxte05IjJXVX/PdiCRW4FbAerWrZuHIpmCbNkyWLgwa71TcFNmRo6M7PmqyiAv68O9995LjRo18qGUxpjCJNIaaktgY4jH/sTNR41GH+AYVb1SVVPyGEzB1UiP97tfhyPLuwH4TFX3qupWYBZwSuCBVHW8qrZV1bb2IVl01a2bt2Xavv76a2bNmkW1atVs8XBjDBB5QP0duFdEyvhvFJGywL3A8mhOqqqTVHVXNM/JwTygsYg08BZCvx74KGCfD3GZmUp6y82dASyLYRlMIZGSAvv2HZlqsFevyFINqmpm3+mAAQOoUqVKvpbXGFM4RDMo6VNgg4h8iWuyrYkbVVseuCSnA4jIT0AvVV3q/R6Wqp4eYdlQ1cMi0g/XhJwEvKqqS0Skj/f4OFVdJiKfAb8CGcAEVY1iPKcpKkaMgClT3BQZ3zJtDRpARkZkU2Y++eQTfvzxR2rWrEn//v3zv8DGmEIh0tVmZolIY+AeXO7eU4FNwGu4tIOhmoP9LSFrNPBScl5fNSqq+iku6PtvGxdw/2ng6Vie1xQ+y5a5kb2lSmUFUF/KwZxkZGQweLCbRfbggw9SoUKFfCypMaYwiTg5vqr+BQzI7YlU9Wa/33vl9jjG5FWzZrlPOTh9+nQWLlzIscceS58+ffKvkMaYQieqTEki0lxEeojIQBGp5W07QUQq5U/xjIk93xxU//7T7t2zB9hg0tPTM2unDz/8MOXKlYtDaY0xhUVENVQRqQi8ilv8+5D3vM9wzb6PA+uAaFabCbeAeAawC1iuqlEvC2dMTvznoC5b5mqmvXvDBx+Ef97UqVNZunQp9erVo3fv3nEpqzGm8Ig09eB4oDMukcP3uJVm2qrqzyLSC7hPVVtGfFKRDLL3oQpH9qmmAROAe1U1ysW0YsNSDxZNuVm27fDhwzRv3pwVK1YwYcIEC6jGFGN5TY7fDXhAVWcAgR85fwD1oixPJ1ytdhwuULf1fr6Cy3h0LTASuAV4NMpjGxNUSorL4Vu+fPRzUCdPnsyKFSto1KgRN91kSbaMMUeKdFBSOWBbiMcqcWSQzUk/4HVVHRqw/XMRGYqbXnOZiJTEZVKKYHagMaGlpLg5phMnwoYNbs7ppElZeXx793bTaYI5dOgQjz7qvtcNGTKEUv5VW2OM8UQaUOcBN+H6TQNdjVvFJRoXAi+FeOx7svpjZwEPRXlsY44wYoQLpr6BRyVLwi23wOrV0Ly5ezzUHNTXX3+d1atX06RJE7p37x6/QhtjCpVIA+rDwFci8hUwDdff2VlE7sEF1HCDjILZjku4/1WQxy73HgeXNGJnlMc25gi+uac+ycluZZmyZcMv13bw4EEee8wtnjRkyBCSkiJeVdAYU8xE1IeqqrNxSeXLAGNwg4iGAQ2BTqo6L8rzPgX0E5GPROQWEbnS+/kxcAfwpLdfR1zt2JhcS0mBKlVyl7v3tddeY926dbRo0YJrr702/wppjCn0cqyhevl7rwZ+UtWzRaQcUA1IVdV9uTmpqo4RkT9xzbljvXIcBn4BuqnqB96uI4GDuTmHMZDVd9q3r+snnTgxsn5TgAMHDjDcW47GaqfGmJzkGFBV9YCITAAuBlao6n6yLyieK6o6HZguIiWAGsAWVc0I2GdrXs9jijf/vtMWLbLmnlapAmPHhs/dO2HCBDZs2MBJJ53EVVddFb9CG2MKpUjnof4E/EdV/5P/RSo4bB5q4ZebOacAaWlpNGrUiI0bN/Lee+/RrVu3/C+sMaZQyOs81HuAASLSxZvKYkyBl5IClSvnru90/PjxbNy4kVatWnHllVfmWxmNMUVHpAH1A+BY3JqiaSKyRUT+9r/lWwmNyaURI+COO1xfqX/e3htuCL/u6b59+xg5ciQAw4YNo0SJqFJeG2OKqUhrm2OJ8XJrxuS3Zctg4cLsfafNmrl1UMP1nY4bN45NmzbRunVrLrvssvgV2BhTqIUMqCLSHfhMVbcHyWhkTIGVkuJqp74Ug8nJWQF0xgwXXEPZu3cvTz7pZm0NGzYMEYlDiY0xRUG4tqw3gRN8d0SkhIisE5GIk+AbE2++aTKjR8NLL7kUg/7Nvb17h2/uffnll/n777857bTTuPTSS+NWbmNM4ReuyTfwq7kAdYDS+VccY/ImLykG9+7dy1NPPQXA0KFDrXZqjImKjdg1RUpuUwwCvPTSS2zZsoUzzjiDSy65JH8Laowpcmz4oikS8rI0G8CePXusdmqMyZOcaqj9ReQv73ffJ8xdIrI5YD9V1QciPamIPAJcpqqn+227F/gX0BVYqqqW581EJC9Ls/mMHTuWrVu30q5dOy666KJ4FNsYU8SEC6jrgPYB2/4g+MoyCkQcUHHLwA0RkZqq6pvDegnwqfe7VQ9MxPLSbwqwe/dunn76acBG9hpjci9kQFXV+vl43vm4BcsvAV4XkQrA2cATvtPn47lNEZOXflOAMWPGsG3bNs4880wuuOCC/CuoMaZIS0gfqroEwp8Dnb1N5+FWlZmViPKYwq1u3dz1m4KrnT7zzDOA1U6NMXmTyEFJ/wUu8FabuQT4RlUPJbA8phBKSYF9+46cb9qrV/j5pj6jR49m+/bt/OMf/6BTp075XVxjTBGWyGkznwOVgX/gAuoT4Xc35kgjRsCUKS6doC+9YIMGkJERvt8UYNeuXTz77LOAjew1xuRdwgKqqm73loW7F6iLq7EaExVf/2mpUlkB1Lc8W058tdP27dtz/vnn529BjTFFXqLnof4XuAL4TVXXJbgsppBJSXELheem/9S/dmp9p8aYWIg6oIpzbIzWRf004GfmaWJwbFOE+eae9u175PJsOeXrBVc73bFjB2effTYdffNtjDEmDyIOiiLSGRgCtAKSgNOBn0VkPDBLVd+K9uSqukBE/gXM9Nv8F3BLtMcyxYv/3FP/5dmqVIGxY8P3n+7cudNqp8aYmIuohioiNwEfAb8BtwY8bwXQO7cFUNVXVXW13/1dqjoxt8czxYP/3NPkZDffNC0Ndu7MeTCSr3Z67rnnWu3UGBMzkTb5DgKeVtWeQGBNdAnQPKalMiYHoeae1q0b/nn+tdOhQ4fmT+GMMcVSpAG1HvBliMfScNNfjImbw4eDzz09fDj881588UVSU1Pp0KEDHTp0iENJjTHFRaQBdT1waojH2gIrY1McYyKzcSMMH+76TsuWdT+HD3fbQ0lNTeW5554DrHZqjIm9SAPqRFwy+xuBct42EZHzgQHAf/KjcMYE8l+mrU4d13eanu5+1qkTfrrMCy+8QGpqKh07duTcc8+NX6GNMcVCpKN8nwSOB14H0r1tP+BG+76iqi/mQ9mMySYvy7Slpqby/PPPA1Y7Ncbkj4gCqpfM/g4ReR6XyL46sB2Xf/f3fCyfMZnyskzbqFGj2LlzJ+eddx7nnBNsBUJjjMkbcbEyh51EyqvqvjiUp0Bp27atzp8/P9HFMJ6kJDc1plSprG2+NIPp6aGft2PHDurXr8+uXbv49ttvLaAaY/JERBaoatvA7ZH2oW4Vkaki0lVEysS4bMZEJLfLtD3//PPs2rXLaqfGmHwVaUAdANQC3gX+FpE3ReTSvKYfFJHmItJDRAaKSC1v2wkiUikvxzVFT26Xadu+fTsvvPAC4LIiGWNMfom0D3UMMEZEjgWu9W4fATtFZDowRVVDzVM9gohUBF4FrgIOe+X4DNgEPA6sA+6L4jpMEZfbZdqee+45du3aRadOnWjvS61kjDH5IKI+1KBPFKmLC6z3AMeoajR5gccDnYEewPe45BBtVfVnEekF3KeqLXNVsBiyPtSCIzf9p9u2baN+/frs2bOH77//nrPOOis+hTXGFGl57UMNPNgJuGB4E1Ab+DPKQ3QDHlDVGWRNw/H5A5eZyZhMzZpF33/63HPPsWfPHi688EILpsaYfBdxQBWR+iIyQEQWAMuBO3CrxJytqtEGwHLAthCPVeLIIGuKuY4doXv37P2n3btnTaEJtHXrVl580U2Ptr5TY0w8RNRMKyI/4lIMbgfex/VvztTcthfDPFzt9rMgj12NSxphTCbfOqe+/tNmzdz9Dz4Ivv+zzz7Lnj17uPjii2nXrl1cy2qMKZ4inYc6CZgCfKmqea49ikh74CtgNjANeAm31moTXEA9R1Xn5fU8eWV9qAVHNH2oW7ZsoUGDBuzdu5e5c+dyxhlnxLewxpgiLU99qKraS1U/i0Uw9Y43GzgfKAOMAQQYBjQEOhWEYGoKlmjmoD799NPs3buXSy+91IKpMSZuQjb5ikhnYLaq7vJ+D0tVP43mxKr6PXC2iJQDqgGpxTEbk8mZ/xxU/9y9vXrBE09k33fz5s2MGTMGsL5TY0x8hetD/RhoB/zk/R6O4hLlR0REgi1IXlVEsg6oujTS45miLZo5qE8++ST79+/n8ssvp02bNokpsDGmWArZhyoi9YC/VPWg93tYqvpHxCcVycAF4XDHizhA5xfrQy0YIu0/3bhxI40aNSItLY2ff/6ZU08NtYSvMcbkXqg+1JA11IAAqbjgeijIgUsCx0ZZnmCTHY4CLvRud0V5PFOE+eag+k+RCdZ/+sQTT5CWlka3bt0smBpj4i7SeahrgFCfUKd4j0dMVb8NcpuuqrcDKbgMTMYAkc1B3bBhA+PHjwdsvVNjTGJEmi5QwjxWFjgQg7L4zMDNdTUGiGwO6siRIzlw4ADXXHMNJ510UsLKaowpvsL1oZ4MtPLuTgIeBVYH7FYWV5usrqqtiAEReQ64KhfZl2LO+lALhpz6UNetW8cJJ5zA4cOHWbRoES1atEhcYY0xRV7UfahAV1yyBXB9qIND7LcGuC3KwrwTZHNpoCnQGBgYzfFM0ZWSApUrh+9DHT58OIcOHSI5OdmCqTEmYcLVUEvhgpwAu4DzcCkD/R0MNlApx5OKzAiyOQ3YAEyPdk5rfrEaauK1bAlXXglvvw0TJ2bNQb3hBnj2WTjjjNU0adKEjIwMli5dSpMmTRJdZGNMEZebUb6HAF+wzNWqNGGOHSKluTHZLVsGCxdCixbZ+1A3bXJzUHv1epTDhw/Ts2dPC6bGmISKeA1TABGpA5yI6zvNpqDUKk3R4ks5mJyclcRhxgwXXJcvX86bb75JyZIleeSRRxJbUGNMsRfpajOVgHdwc0Qha9Svf3txwhMxmKIlp5SDw4YNIyMjg969e9OoUaMEl9YYU9xFWkMdCdQFzsatENMV2AHciOtbTQ79VEdE5pFDdiR/qnp6pPuaoilcysGWLRdxww1TKF26tNVOjTEFQqQBtTPwMPCjd3+jtyLMLBF5FrifnJMxLCGKgGrMsmWuVlqqVFZzr2+6zJAhQ1BVbrvtNo4//vjEFtQYY4g8oB4DrFfVdBHZi0sT6PMp8F5OB1DVXtEXL3IicjHwAq7peYKqPhFiv9OAucB1qvpufpbJ5E5Kiqudli8ffLpMo0YHmD59OuXKleOhhx5KXEGNMcZPpKN31wPVvd9XAF38HjsDN+UlYUQkCRgLXAI0B5KDrWjj7fck8Hl8S2gilZICgwbB6NHw0kuuv9Q/5WDv3lChwgsA9OvXj9q1aye2wMYY44m0hvol0AmYDjwPvC4ibXApB88Bno32xCJyHXALoUcN14zicKcDK1V1tXfsKcAVQOAScP1xtenToi2viY8RI9x8U1+ttGRJuOUWWL0amjeHnj1/Z+jQB6hYsSIDBgxIbGGNMcZPpDXUB/CyJqnqm8BVuAxJO4B+wIPRnFREugOvAyuBOsBHuDVXS+CSSIyJ5njAcbhatM8Gb5v/OY/DDaYal0PZbhWR+SIyf8uWLVEWw+TFunVZ/aY+yclumwgsWqTMnOmSct19991Ur149xJGMMSb+IgqoqrpPVbf63Z+uqjeoajdVfVlVM6I87/3AY8Ad3v2XVPWfQANgK7AvyuMFS94fOABqFPCAqqYH2TfrSarjVbWtqratUaNGlMUw4aSkuMxHSUnuZ0oK7N7tpsScdx6ceiocc4zrJ/XnSzP49ddfM3PmTKpWrcq///3vhFyDMcaEEtMMSFFoDHzvBbd0oDKAqu7G9XH2i/J4GwD/oZ51gI0B+7QFpojIWuBq4CURuTLqkptc8e8bTUtzP++/H2rVgunT4Y474M8/XTrB3r2P7DcdOFB5+OGHARgwYABVq1ZN7AUZY0yAkH2oIrKF6OaNRtPnuRMo4/3+J9AMmOk7NXB0FMcCl2O4sYg08I53PdA9oHwNfL+LyCTgY1X9IMrzmFwK7Bvt2BHefNMF0g8/zNrPNz3GP83giBFQocL/8eOPP1KzZk3uvPPO+F+AMcbkINygpLHk37zR+cDJuNG2HwGDReQwcBC3qs2PYZ57BFU9LCL9vOMlAa+q6hIR6eM9Hrbf1OS/wL5RcPeXLz9yX/80gwAZGRm0auVqpwMHDqRChQr5WFJjjMmdcMnxh+bjeUcCvvVOB3u/v4QLhvOAW6M9oJdL+NOAbUEDaX7PiTVH8uXkDbUEWzhTpkxh0aJFHH/88fTp0yf/CmmMMXmQkD5UVZ2rqlO931NV9QqgIlBVVc/wTX8xRYN/Tl7/vtFevVy/ajiHDh1i8GC3FO/QoUMpU6ZM+CcYY0yCRJocP8c8vNHk3hWRjsBM9VuMVVUP4Oa1miImXE7e5ByyQL/66qusWrWKE088kZtuuik+BTbGmFyINLFDsDy8RwFnAvuBr6M879fAZhF5B5iqqj9E+XxTiITLyRvOvn37ePTRRwEYPnw4JUtGtdqgMcbEVUSfUKH6HEWkIm5QUbQB8STgOlxC/f4isgGYCkxR1QVRHssUcKH6T+vWDf+8MWPGsHHjRlq3bs1VV12Vv4U0xpg8ylMfqqruwaUdzKEn7IjnLVHVwaraFGgNTMZlMZonIitFZHheymUKlsOHg/efHj4c+jmpqak88YRb32DkyJGUKJGoKdPGGBOZWHxKVQWq5fbJqvqLqj6kqicAlwPlAFtCpAjZuBGGD3f9p2XLup/Dh7vtoTz99NPs2LGDDh06cMEFF8SvsMYYk0uRDkrqHGRzaVxChnuAGbktgIgcBXTDNQGfi+uTfTu3xzMFT926UKcOLF6ctW3GjNBTZv7880+ef/55wNVORYJlljTGmIIl0lEeH+MGJQV+sh0CPiTKVIEiUhnXxHsdcD5wGPgEl+HoE2/ErykC/KfMTJrkBifNnu3uPxF0xVq3ePj+/fu5+uqradeuXRxLa4wxuSd+M1dC7yRSL8jmNOBvjeQARx4vDRegP8cNRvpIVfdGe5z81rZtW50/f36ii1GotWzp8vZu2uSmz/imzBw4AOvXH7n/4sWLOeWUUyhRogRLly6lcePG8S+0McaEISILVLVt4PZIR/n+EePy9AHeV9VdMT6uKWCinTLzwAMPkJGRQd++fS2YGmMKlagm9olIE9w6o8EWBP/0yGcEp6qTojmvKbyiSTn4zTff8Omnn1KpUiUeeeSR+BXSGGNiINJBSScBKbhBSKHWHk2KYblMERBN/2lGRgYDBgwAXC21Zs1oFi8yxpjEi7SG+ipuAFIXYCVuVRhjwoom5eDUqVNZsGABxx57LPfcc09iCmyMMXkQaUBtBlylqp/nZ2FM0RJp/+mBAwcYOHAgAI899hjly5ePc0mNMSbvIk3s8BOQQ6K48ETkVW8BcETkHC9toSnCmjVzTbz+gvWfvvTSS6xdu5YWLVrQs2fP+BXQGGNiKNKAeitwq4jcICLHikj5wFsEx+gJ1PB+nwE0z02BTeHRsSN075495WD37tkHKO3YsYPHHnsMgKeeeoqkJOuKN8YUTpE2+W4F1gJvhNknp0/Cv4AOIrIUN7CpbLhArKr7IiybKaBmzIDevbP6T5s1c/c/+CBrnyeeeIIdO3bQsWNHLrnkkoSV1Rhj8irSxA4f45Zqm0CIQUmq+noOxxgMDCWHdVX9jpfwqooldsibpCRIS3N9qD6+PtT0dPjjjz9o0qQJBw4cYN68ebRte8Q8aWOMKXDylNgB6Ajcoqq5zrGrqo+KyCe4AU5vAMOBVbk9nin4fH2ooeagPvLIIxw4cIDk5GQLpsaYQi/SgLoWyHMTrLfW6QIROR94TVXX5PWYpuDy9aG+/XbWHNTu3eHqq2HhwoW89dZblC5dmhEjRiS6qMYYk2eRBtT7gWEi8ouqrs3rSVX1ZgARORbXlHwUsB2Yo6phFvUyhUm4PtTlyx9AVenXrx8NGjRIdFGNMSbPIu1DnYebNlMNV1tNDdxHVU+P+KQiJYAxwC1kH8yUDowH+qtqRqTHyy/Wh5o3oftQlYyMElStWpVVq1Zx1FFHJa6QxhgTpbz2oS72brHyKPBPYCButZnNwDG45dweBbYBg2N4PpMAofL4Vq36F9u3w8CBAy2YGmOKjIhqqDE/qcg64EVVfSbIY/cBd6pqnhJJxILVUHMvJQXuvtuN6PXP49ujRzp//tmDunW/Z/ny5ZQNteyMMcYUUHmtocZaTeDXEI/96j1uCrFQeXxTU1OBFIYPf8OCqTGmSIl0tZl3ctpHVa+N4ry/A9cDXwR57HpgeRTHMgVQqDy+ZcpUo1WrVtxwww2JLaAxxsRYpDXUGkG2HQU0wfV3RhsAhwNTRKQu8C6uD7UmcA1uzuv1UR7PFCApKVC5cvD+0woV1vHcc89RokSkWS+NMaZwiCigqmrHYNtF5HhgOvB8NCdV1XdEJBUYBrwAlMItD7cAuFhVv4zmeKZgGTEC7rjDTZGZODGr/zQ5OYOmTd+nY8d7E11EY4yJuTz1oarqehEZCTwF/F+Uz/0C+MKbQlMd2FoQpsqYvFu2DBYuhBYtss9B/ftvmD378kQXzxhj8kUs2t3SgTq5fbKqZqjq3xZMiw7fdJnkZFi82OXtHT0aatfeyQknnJDo4hljTL6IdFBSsKXWSuPy8j4GzItloUzhlZIC+/ZBr17Zp8skJx/g8cfLJLp4xhiTb6JJ7BBswqrggum/YlYiU6iFmi6Tnq7885+RLJtrjDGFUzSrzQRKAzao6p8xLI8p5EJNlylb1mqnxpiiLaI+VFX9Nsjtx9wGUxHp4g1GMoVMSgq0bOny9LZsmdXEO2kSnHkmVKrkmnj9uSXbJCHlNcaYeAkZ1ETkaBF5T0QuCrPPRd4+0WY2+hD4U0SeFJFmUT7XJEhKCgwa5AYYpaW5n/ffD8ccA9OmwUMPwZgx0Lu3MmOGq5n6VpwZNCjRpTfGmPwVMpeviDwGdAFaa4idRERwc0e/VNUHIj6pSH3gZuAm3Co2PwGvAlNVdVc0F5CfLJdvdi1buiDqn6xhxgy4/Xb47besbffeO4///KcGe/fWpUmTDAYPLpnZ/GuMMYVdqFy+4ZpdrwXGhQqmAN5jrwBXRFMYVV2rqkNUtQFwAbASlxziLxF5U0SCJpIwieXrH/XXvj2sWJF1f8+ePUyb1o09exowZsw4li2zYGqMKR7CBdR6wNIIjrEMqJ/bAqjqN6raAzgRV9u9AfhKRNaIyD0ikqgE/iaAb36pP9c/mnV/6NChbNiwgbZt23LbbbfFt4DGGJNA4QLqfqByBMeo6O2bKyJyrohMwuUDbgmMBS4EpuFSE76R22Ob2PGfX+rfP9qrV1b/6K+//sqoUaMoUaIE48aNIykpKdwhjTGmSAlX+/sZuBz4JIdjXOHtGzERqQf09G71gZnArcD7qnrA2+1rEZkDvBXNsU3+CDW/NCPDTY/JyMigT58+pKen079/f9q0aZPoIhtjTFyFC6hjgXdE5AdVfT3YDiJyE25w0XVRnnc1sBGYBLyqqmtC7LcEN2DJJFjo+aXu94kTJzJnzhxq1arFY489lriCGmNMgoQMqKr6voi8ALwmIv2Az4B1uIxJdYGLgLbA86o6PcrzXgZ8llP+XlX9neBJJUwcpaRAlSrBl2Nr1gy2bNnCAw+4Qd6jRo2iSpUqCSqpMcYkTtjkCqr6b1yT7i7gPtyI3vHA/cBu4ApVvS8X520L1Ar2gIjUFpHBuTimyQe+uad9+7r5pMHml95///3s2LGDCy64gGuvjWadeWOMKTpCzkM9Ykc32vZo7+42VT2c65OKpANnquoRzbki0gb4SVUTPqLF5qFmn3uakuL6UpctczXWsWPhuONmce6551KmTBkWLVpE48aNE11kY4zJV6HmoUY8JcULoJtjVR6CJ9sHtxTcjhidx+RBSgosXZo19zQ52d18fadXXXWQU0+9HYCHHnrIgqkxpliL2xxPEfGN6gUXTF8WkcCsSGWBk4Av4lUuE5yvqbdhw9B9p8899xxLly6lcePGmX2oxhhTXMUzacI+YJv3uwA7ge0B+xwE/gu8FMdymSBGjICJE900md693e++tU1794a7797Cgw8+CsBLL71EWd9wX2OMKabiFlBVdRouWQMi8hrwaJjpMibB/KfJQNbc0/Ll4ZVXlJSUf7J//36Sk5Pp1KlTYgtrjDEFQEKWUFPVmy2YFmzNmmWlGUxOhsWL4auvoF49KF/+Qz7++GMqV67Mc889l9iCGmNMAWFrkpqgOnaE7t2zT5Pp3h3+8Y+D3HnnnQCMGDGCWrWCzn4yxphiJ56Dkn4CeqnqUhGZR+hRvgCo6unxKZkJxjfP1NfU26yZu//qq3v466/1tGnThttvvz3RxTTGmAIjnoOSlpCVRH8JOQRUk1jLlsHChTB8eNa2Q4fg8cerUrJkSSZMmGDJ740xxk88ByXd7Pd7r3id10QuMHFDsOkyFSqs4557HqJVq1YJK6cxxhRE1odqgKx5p6NHQ1qaSzUY2IeanLyXqlVfYpBvvTZjjDGZ4tmHmmO/qT/rQ40v37xTX43U19R71VWwc6dSvvw69u4dyNy5d1GmTJnEFdQYYwqoePehWr9pAeWbd+pvyBAYOVI58cTm/Pbbb9x///2cfrp9zzHGmGDi2YfaK17nMtGrWzd4n2mtWqn89ttvNG3alEcffTRxBTTGmALO+lANKSmwbx/06pW9z/SmmzL4669+lChRgtdff93SCxpjTBg2D9UwYgRMmeLy9vrmnTZoADt2pKL6Ng8++JA19RpjTA5sHqrJlrc3OdltO3QIypSpSqtWrRg6dGhCy2eMMYVBkZmHKiIXAy8AScAEVX0i4PEbAN8aY3uA21X1f7EuR2GTkhJ6zmnFiut56623KF26dOIKaIwxhUTC+lBFpLSI3CoiE0TkE+/nLSIS9ae3iCQBY4FLgOZAsog0D9htDXCuqp4MPAaMz+s1FHa+uad9+7q0goFzTq+4YgktWrRIdDGNMaZQiGeTbyYRaQZ8BhwLLAD+BloCNwGPiMjFqro0ikOeDqxU1dXe8acAVwCZx1DVH/z2nwvUydNFFAH+c09btMjqP61Y8TB16jzP668PTHQRjTGm0EhUDXU8boHxRqraTlUvV9V2wAne9nFRHu84YL3f/Q3etlB64xYyL9b85576lmhLS4Pdu0vw3//eRIkSNgjcGGMilahPzLbAYFVd57/Ruz8YOC3K40mQbUEHPYlIR1xAfSDE47eKyHwRmb9ly5Yoi1F4+Ped+ps9G+rV20/dunUTUzBjjCmkEhVQ1wKhJjWWBdaFeCyUDcDxfvfrABsDdxKRk4EJwBWqui3YgVR1vKq2VdW2NWrUiLIYhUO4vtMePQ7w+OMVEl1EY4wpdBLShwo8CDwrImtU9UffRhFpBzwK3B/l8eYBjUWkAfAncD3Q3X8HEakLvA/0UNXf81L4wi5c3+moUZo5dcYYY0zkRDU+00GDJHOoDxyNG5D0N1DTu20D1kab2EFEOgOjcNNmXlXVESLSB0BVx4nIBOAq4A/vKYdVtW24Y7Zt21bnz58fTTEKvJQUuOEGOHDAzTv1OXQIypZV0tODtZ4bY4zxEZEFweJHIpPjL4nlwVX1U+DTgG3j/H7/F/CvWJ6zsPE19TZsGHzeabNmFkyNMSa3LDl+MeJr6t20yfWdTpzoRvnOng29eysjRlhANcaY3EpUH6pJAP8Ug5DVd1q+vDJ+vFjfqTHG5IFNNCxGmjXLmibjm3f61VdQr54FU2OMyatEph68TkS+EpF1IvJ34C1R5SrKOnaE7t012zSZ7t2z96UaY4zJnYQEVBHpDrwOrMTNGf0I+Ngrzy5gTCLKVdR9/XUGvXsL/ftD2bKuydc3D9UYY0zexG3aTLaTiiwE3gWeAA4BbVX1ZxGpBHwJvKuqz8S9YAGK0rSZjIwMSpaEAwdKBJkuA+npiSubMcYUJqGmzSSqybcx8L2qpgPpQGUAVd0NPAn0S1C5iqzrr/+QSpUygqYabNYsMWUyxpiiJFEBdSdQxvv9T8D/I11wCR9MjNx33wJmzbqQ/v1LHpFqsHdvNzfVGGNM3iRq2sx84GTgc1z/6WAROQwcxCXH/zHMc00UlixZwn/+U4MPPqhwRKrBKlVg7FhshK8xxsRAovpQ2wH1VHWqiFTFDVDqjEsbOA9I9q1tmkiFvQ91y5YttGvXjjVrVljfqTHGxEiB6kNV1bmqOtX7PVVVrwAqAlVV9YyCEEwLu/3793PFFVewevVqqlTZaX2nxhiTzxI5D7W0t/boBBH5BBgLXCcipRNVpqIiIyODXr16MWfOHKpX70+pUlXo1St732mvXtZ3aowxsZSQPlQRaQZ8BhwLLMCtNtMSuAl4REQuVtWliShbUfDwww/zzjvvULlyZY466hnGjSvBpk1ZfacNGkBGhvWdGmNMLCVqUNJ43Ejfs1U1czFxb83ST4BxwDkJKluhNmHCBEaOHElSUhLTpk3jkktKZ+bv9QVQX/+pMcaY2ElUk29bYLB/MAXw7g8GTktIqQq5L7/8kj59+gDw8ssvs23bhVSpgvWfGmNMHCQqoK4FQtWRygLrQjxmQliwYAHdunUjPT2dAQMGULHiLQwaBH37YnNPjTEmDhLV5Psg8KyIrFHVzDmn3nSaR4H7E1SuQmnlypV07tyZPXv20L17d0aOHMnJJ7v1Tm3uqTHGxEfc5qGKyDzA/2T1cRmR/vZuNb3bNmCtqp4el4KFURjmoW7cuJH27duzZk07atR4nm3batKsmbBsGaSlYXNPjTEmxkLNQ41nDXUJ2QPqkjieu0jatm0bF154IWvWtKN27YlMnlyO9u1dH2nXru6n/9Js1ndqjDH5J24BVVV7xetcxcH27dvp1KkTS5YsoVq1L5g8uVxm8OzYEfr1gxtugMmTyQyyvXvDiBGJLbcxxhRVCUk9mHlykWOBM4GjcE29c1V1Y8IKFKCgNvnu2LGDTp068fPPP3PiiSeycuVvpKXJEc27ZcpA8+au77RZMzcQyfpOjTEmbwpCk69/YZKA0cAtuPy9PukiMh7or6oZiShbQbdz504uuugifv75Zxo1asSdd87hkUckaPNu8+aweHHiymqMMcVJoqbNDAP+CQzEDU4q5/0c6G0fmqByFWi7du3i4osvZt68eTRo0IC77/6RZ589yqbGGGNMAZCoaTM3AQ+r6jN+29YBT4uIAnfiEjwYz+7du+ncuTNz586lXr16zJgxg0svPdqmxhhjTAGRqOXb0oDLVfWLII9dCHykqglPjldQ+lBTU1Pp3Lkzc+bM4fjjj+fbb7+lQYMGJCXZ1BhjjIm3ArV8G/A7cH2Ix64HlsexLAXali1bOO+885gzZw5169ZlxowZNGjQAIC6dS2toDHGFBSJavIdDkzxkuG/C2zGJXW4BuhI6GBbrKxdu5YLL7yQFStWcMIJJ/DVV19Rr149AFJSYN8+twzbpElZU2N69YInnkhkqY0xpnhKSEBV1XdEJBU3OOkFoBRwCLeU28Wq+mUiylWQLFq0iIsuuoi//vqLU045hc8++4xatWplPj5iBEyZgi3LZowxBUTcA6qIlAJOBxar6pkiUgKoDmy1qTLO7Nmzueyyy0hNTaVDhw588MEHVKlSJds+y5Zhy7IZY0wBkog+1HTgG6AZgKpmqOrfFkydadOm0alTJ1JTU+nWrRv//e9/+fTTKrRsCUlJ0LKla9K1ZdmMMaZgiXtA9QLnCuCYeJ+7IFNVnnrqKa699loOHDjA7bffzjvvvMP06WUZNAhGj3YjekePhhdegLZtbe6pMcYUJIka5TsIGCwiJyXo/AVKWloaN998Mw888AAATz/9NGPHjiUpKYkRI7KWYStVyv18+23YuNH1o/bv75p5+/d3963/1BhjEiNR81Dn4TIjHQX8iRvlm60gxWX5tr/++otu3boxd+5cypcvzxtvvMFVV12V+bjNNTXGmIKlQOXyxS3dVuyzzM6bN4+uXbvy559/UrduXT788ENatWqVbZ9mzWwZNmOMKQwSNW2mVyLOW1CoKmPGjOHf//43hw4don379rz33nvUrFnziH07doTu3V0zr2+uaffucPXVCSi4McaYkOIaUEWkHNAZ19z7F/C1qm6OZxkSLTU1ld69e/P+++8D0K9fP5599llKly4ddH/fYCPfXNNmzdz9Dz6IY6GNMcbkKG59qCLSEPgKF0x9dgHXBsvpWxDEug91wYIFXHvttaxevZrKlSszceJErs6hqml9qMYYU7AUhFy+TwEZwNlAeaAFsBB4JY5lSIiMjAxefPFFzjrrLFavXk3r1q35+eefcwymYPl6jTGmsIhnQD0Tt2Tb96qapqrLgNuAuiJSO47liKs///yTiy++mLvuuouDBw9yxx138MMPP9CoUaMcn+ufr9d/vmmvXjbf1BhjCpp49qHWBlYHbFsFCFAL16dapHz++eckJyezY8cOqlevzvjx4+natWvEz7d8vcYYU3jEe5Rv/Ce9JlDdunXZv38/nTt3ZuLEidmS24eSkuIC6bJloGr5eo0xprCId0D9XEQOB9n+deB2VT1yDkkh06xZM+bNm0eLFi0QkRz3T0lxTbkTJ7pAanNQjTGm8IhnQB0Wx3MVGC1btox4X/80gwCPPXbkeqe9e7v9jCnODh06xIYNG0hLS0t0UUwRVrZsWerUqUMp/2kWYcQtoKpqsQyo0fAtyeaTnAyHD8Pll7vBSc2aWb5eYwA2bNhApUqVqF+/fkStP8ZES1XZtm0bGzZsoEGDBhE9J1HJ8U2AlJTgS7LVqQP16rk5p4sXWzA1BtyCEkcffbQFU5NvRISjjz46qlYQC6gFgK/vtG9fW5LNmEhZMDX5Ldr3mAXUAsDXdzp8ePYl2a66ypp4jSmItm3bRqtWrWjVqhW1atXiuOOOo1WrVlStWpXmzZvHtSwffPABS5cuzbw/ePBgvvrqq6iPs3bt2qBjPtauXYuIMHr06Mxt/fr1Y9KkSbkqb27Vr1+frVu3HrF9z5493HbbbTRq1IgWLVpwzjnn8OOPPwKQlJREq1ataNGiBaeccgrPPfccGRkZAMycOZMqVapk/h07deqU5zImarUZ48e/7zQ52d1802MsmBpT8Bx99NH88ssvAAwdOpSKFSty3333sXbtWrp06RLz8x0+fJiSJYN/XH/wwQd06dIlM5A/+uijMT9/zZo1eeGFF7jttttC5h0PJ1z58+pf//oXDRo0YMWKFZQoUYLVq1ezbNkyAMqVK5f5d/r777/p3r07O3fuZNgwN6Tn7LPP5uOPP45ZWayGmiApKdCypcvVG6zv1KbHGFM4paenc8stt9CiRQsuvPBC9u/fD8CqVau4+OKLadOmDWeffTa//fYbAH/88Qfnn38+J598Mueffz7r1q0DoFevXtx777107NiRBx54IOjzf/jhBz766CPuv/9+WrVqxapVq+jVqxfvvvsu4JaIPOusszjllFM4/fTT2b17N2vXruXss8+mdevWtG7dmh9++CHHa6pRowbnn38+r7/++hGP/fLLL7Rr146TTz6Zrl27smPHDgA6dOjAwIEDOffcc3nhhRfo0KED99xzD+ecc07mlMJu3brRuHFjHn744czjXXnllbRp04YWLVowfvz4sOVatWoVP/74I8OHD6dECRfOGjZsyKWXXnrEvjVr1mT8+PGMGTOGfMthr6p2C3Fr06aN5oe331Zt0ED1m29UDx5UHTRItVatrPvffOMef/vtfDm9MYXe0qVLM3/HJYyJ+S1SQ4YM0aefflpVVdesWaNJSUm6cOFCVVW95ppr9M0331RV1fPOO09///13VVWdO3euduzYUVVVu3TpopMmTVJV1YkTJ+oVV1yhqqo9e/bUSy+9VA8fPhz2+T179tRp06Zllsd3/8CBA9qgQQP96aefVFV1586deujQId27d6/u379fVVV///139X3OrVmzRlu0aHHE9fm2r169Wps0aaKHDx/WO+64Q1977TVVVT3ppJN05syZqqr6yCOP6F133aWqqueee67efvvtmcc599xzdcCAAaqqOmrUKK1du7Zu3LhR09LS9LjjjtOtW7eqquq2bdtUVXXfvn3aokWLzO316tXTLVu2ZCvbhx9+qFdeeWXIv02FChWO2Fa1alXdtGmTzpgxQytXrqynnHKKnnLKKTp8+PCgx/B/r/kA8zVIzLAm3wQInG86fLj7edVVsHOnTY8xpjBr0KABrVq1AqBNmzasXbuWPXv28MMPP3DNNddk7nfgwAEA5syZk7mcY48ePRgwYEDmPtdccw1JSUlhnx/K8uXLqV27NqeddhoAlStXBmDv3r3069ePX375haSkJH7//feIr+v000/n7bffzty2c+dOUlNTOffccwHo2bNntjJed9112Y5x+eWXA3DSSSfRokULatd2adwbNmzI+vXrOfroo3nxxReZPn06AOvXr2fFihUcffTREZUxEupXO411k68F1AQInG8KMGQIjBxpS7IZEy3/D8iCoEyZMpm/JyUlsX//fjIyMqhatWpmf144/iNLK1SoABDV831UNego1eeff55jjjmG//3vf2RkZFA2ilymAwcO5Oqrr+acc86JaH9f+X18r02JEiWyvU4lSpTg8OHDzJw5k6+++oo5c+ZQvnx5OnToEHbaSosWLTKvw9fkG87q1atJSkqiZs2amf2ssWR9qAngSynoz/pMjSm6KleuTIMGDZg2bRrggt3//vc/AM466yymTJkCwOTJk2kf+G07h+dXqlSJ3bt3H/Gcpk2bsnHjRubNmwfA7t27OXz4MDt37qR27dqUKFGCN998k/QovsU3bdqU5s2bZ9bqqlSpQrVq1fjuu+8AePPNNzNrq7mxc+dOqlWrRvny5fntt9+YO3du2P0bNWpE27ZtGTJkSOYXqxUrVvDhhx8ese+WLVvo06cP/fr1y7cpVxZQE6BjR+jePft80+7ds+fsNcYULZMnT2bixImccsoptGjRIvND/8UXX+S1117j5JNP5s033+SFF16I6vnXX389Tz/9NKeeeiqrVq3K3L906dJMnTqV/v37c8opp3DBBReQlpZG3759ef3112nXrh2///77EbXInAwaNIgNGzZk3n/99de5//77Ofnkk/nll18YPHhwtC9NposvvpjDhw9z8skn88gjj9CuXbscnzNhwgQ2bdrECSecwEknncQtt9zCscceC8D+/fszp8106tSJCy+8kCFDhuS6fDmRgtZcUpC0bdtW58+fH/PjtmwJV14JH3zgmn+bNcu6v3hxzE9nTJGzbNkymlmTjomDYO81EVmgqm0D97U+1ARYtgwWLswajASupjpyZOLKZIwxJm+syTcO/OecNm9u806NMaYosoCaz3x5ekePhrQ0GDsWRKBnT8vZa4wxRYkF1HzmP+e0VCn38913QTUrZ2///jbv1BhjCjvrQ81nweactm8PGzfC+vWJKZMxxpjYsxpqPgq1xqn1lxpjTNFTZAKqiFwsIstFZKWIPBjkcRGRF73HfxWR1vlZHlvj1Jiizbc0mO/2xBNPxOS4nTt3JjU1NerHwpk0aRL9+vUL+th///tf2rZtS7NmzWjatCn33Xcf4FbR8S1L17hxY7p165ZtmbgOHTrQpEmTzOv3JeQv1oIl+C1sNyAJWAU0BEoD/wOaB+zTGfgvIEA74MecjpuX5PgtWrgk96ouyX2LFqolSqhWq2ZJ743Jq2AJy8Px/x9s0SI2/4PBEq/nl4yMDE1PT8/181977TW94447jti+aNEibdiwoS5btkxVVQ8dOqRjx45V1exJ/1VVp0yZosccc4z+/fffquqS3c+bNy/XZSosokmOX1RqqKcDK1V1taoeBKYAVwTscwXwhvd6zAWqikjt/CpQ4Bqnixe7Ub47d9rgI2PiKXCk/ejR7n5KSv6cr379+gwcOJAzzzyTtm3b8vPPP3PRRRfRqFEjxo0bB7jFrc855xy6du1K8+bN6dOnT+bC176FtNeuXUuzZs3o27cvrVu3Zv369dkW2X7jjTc4+eSTOeWUU+jRowcA//d//8cZZ5zBqaeeSqdOndi8eXPYsj711FMMGjSIpk2bAlCyZEn69u0bdN/rrruOCy+8MFtyfJNdUQmoxwH+Q3w2eNui3SdmLF+vMQVDsJH2Eye67XnhS2vnu02dOjXzseOPP545c+Zw9tlnZ65POnfu3Gxp+X766SeeffZZFi1axKpVqzJXnPG3fPlybrrpJhYuXEi9evUyty9ZsoQRI0bwzTff8L///S8zXWH79u2ZO3cuCxcu5Prrr+epp54Kew2LFy+mTZs2EV9z69atM9dxBbjhhhsyr3/btm0RH6eoKiqjfINlOg7MqRjJPojIrcCtAHXr1s11gQYNcn2lEye6murs2e5+Xv+JjTFHCpfrXCT4SPulS8M/L6esrOXKlQu5+ov/MmV79uyhUqVKVKpUibJly2b2gZ5++uk0bNgQgOTkZGbPns3VV1+d7Tj16tULms/2m2++4eqrr6Z69eoAHHXUUQBs2LCB6667jr/++ouDBw/SoEGD8BcRJQ14USZPnkzbtkdk4Cu2ikoNdQNwvN/9OsDGXOyDqo5X1baq2rZGjRq5LlBysgueNtfUmPynGvrWvHnw1qLmzcM/Ly9yWqYMOGLFk2AroIRKXK8hlmbr378//fr1Y9GiRbzyyithlz4Dt/zZggULwl+Mn4ULF1oO5TCKSkCdBzQWkQYiUhq4HvgoYJ+PgJu80b7tgJ2q+ld+FsrXd5qe7n5aMDUm/nytRQVtpP1PP/3EmjVryMjIYOrUqUGXbQvl/PPP55133slsZt2+fTvglj877jjXk/X666/neJz777+fxx9/PHOR8YyMDJ577rmg+7733nt88cUXJNsHWUhFoslXVQ+LSD/gc9yI31dVdYmI9PEeHwd8ihvpuxLYB9ycqPIaY+LH9/nfv3/W6k6xaC3y9aH6XHzxxVFNnTnzzDN58MEHWbRoUeYApUi1aNGCQYMGce6555KUlMSpp57KpEmTGDp0KNdccw3HHXcc7dq1Y82aNWGPc/LJJzNq1CiSk5PZt28fIsKll16a+fjzzz/PW2+9xd69e2nZsiXffPMNeWm5K+ps+bYw8mv5NmNM3hT25dtmzpzJM888k7lQtym4olm+rag0+RpjjDEJVSSafI0xpjDp0KEDHTp0SHQxTIxZDdUYY4yJAQuoxphCycZ/mPwW7XvMAqoxptApW7Ys27Zts6Bq8o2qsm3bNsqWLRvxc6wP1RhT6NSpU4cNGzawZcuWRBfFFGFly5alTp06Ee9vAdUYU+iUKlUq5mn1jMkra/I1xhhjYsACqjHGGBMDFlCNMcaYGLDUg2GIyBbgj0SXI4jqwNZEFyIBiuN12zUXH8XxugvrNddT1SOSGltALYREZH6wPJJFXXG8brvm4qM4XndRu2Zr8jXGGGNiwAKqMcYYEwMWUAun8YkuQIIUx+u2ay4+iuN1F6lrtj5UY4wxJgashmqMMcbEgAXUBBGR40VkhogsE5ElInKXt/0oEflSRFZ4P6v5PechEVkpIstF5CK/7W1EZJH32IsiIt72MiIy1dv+o4jUj/uFBiEiSSKyUEQ+9u4Xh2uuKiLvishv3t/8zKJ+3SJyj/feXiwiKSJStihes4i8KiJ/i8hiv21xuU4R6emdY4WI9IzTJYe65qe99/evIjJdRKr6PVborzkiqmq3BNyA2kBr7/dKwO9Ac+Ap4EFv+4PAk97vzYH/AWWABsAqIMl77CfgTECA/wKXeNv7AuO8368Hpib6ur2y3Au8DXzs3S8O1/w68C/v99JA1aJ83cBxwBqgnHf/HaBXUbxm4BygNbDYb1u+XydwFLDa+1nN+71aAq/5QqCk9/uTRe2aI3pdEl0Au3l/CPgQuABYDtT2ttUGlnu/PwQ85Lf/594bsTbwm9/2ZOAV/32830viJlBLgq+zDvA1cB5ZAbWoX3NlXHCRgO1F9rpxAXW998FXEvjY+8AtktcM1Cd7cMn36/Tfx3vsFSA5Udcc8FhXYHJRu+acbtbkWwB4zRmnAj8Cx6jqXwDez5rebr4PKJ8N3rbjvN8Dt2d7jqoeBnYCR+fLRURuFDAAyPDbVtSvuSGwBXjNa+qeICIVKMLXrap/As8A64C/gJ2q+gVF+JoDxOM6Qx2rIPgnrsYJxeeaLaAmmohUBN4D7lbVXeF2DbJNw2wP95yEEJEuwN+quiDSpwTZVqiu2VMS1zz2sqqeCuzFNQOGUuiv2+szvALXxHcsUEFEbgz3lCDbCtU1RyiW11kgr19EBgGHgcm+TUF2K1LX7GMBNYFEpBQumE5W1fe9zZtFpLb3eG3gb2/7BuB4v6fXATZ62+sE2Z7tOSJSEqgCbI/9lUTsH8DlIrIWmAKcJyJvUbSvGVyZNqjqj979d3EBtihfdydgjapuUdVDwPvAWRTta/YXj+sMdayE8QYJdQFuUK9NliJ+zf4soCaIN5ptIrBMVZ/ze+gjwDdyrSeub9W3/Xpv9FsDoDHwk9ectFtE2nnHvCngOb5jXQ184/cmjztVfUhV66hqfdxAg29U9UaK8DUDqOomYL2INPE2nQ8spWhf9zqgnYiU98p6PrCMon3N/uJxnZ8DF4pINa9F4EJvW0KIyMXAA8DlqrrP76Eie81HSHQnbnG9Ae1xTRW/Ar94t864foKvgRXez6P8njMIN0JuOd5oOG97W2Cx99gYshJ2lAWmAStxo+kaJvq6/crcgaxBSUX+moFWwHzv7/0BboRikb5uYBjwm1feN3GjPIvcNQMpuH7iQ7gaVO94XSeur3Kld7s5wde8Ete/+Yt3G1eUrjmSm2VKMsYYY2LAmnyNMcaYGLCAaowxxsSABVRjjDEmBiygGmOMMTFgAdUYY4yJAQuoxhhjTAxYQDVFmjhrRERF5IRElydSItLLK3PFMPt08Pbx3XaIyGwROT8R5QnxvJkBZfTdHg64hpaxLnOE5SsvIptE5NwonlNCRMaKyGav7EMjeM79IvJ1ngprCjwLqKaoOxO3Kga47ExF0Q2467wRSAM+E5FWCS1RdjNw5fO/vZbQEmXpj0uR+G0Uz+mGW17sIdy1TIjgOeOA1iLSIdoCmsKjZKILYEw+S8Ylo1/s/T48scXJF7+q6mIAEfkWl63mFuCOhJYqy3ZVnZvoQgQSkRK41+ixKJ/aFNihqq9G+gRV3S0i7+EC+Mwoz2cKCauhmiJLRJKAa3B5QV8FmovIyQH7+JoyTxKRL0Vkr4j8JiLdAvabKSLvikh3EVkpIrtE5L8iUsdvn6DNl77n+t0/U0Q+EpGN3vl+EZEbYnHNqroHt1h9fb/z/UtElojIARH5Q0QGBJQvV+XxmjHTROTyWJTd77jlReRFryk2TUTmiciFfo//0ytnKb9tG0Vkq5cT1tcsmyoit4Q51Xm4pb/e998oIkki8pCI/O69ZhtEZJL32ExcAK7m13xdX0SqiluWb6NX5nUi8p+A870HdBGRo/Lw8pgCzAKqKcrOA47BrWzzLi7vaHKIfd/GBd6uuPyrU/yDpecMoB/wb+BW3Iox43NRrnrA98C/gMtwH7SviUioskXM+xJxPLDJu38/8DIuf3AX7/fHRKRfXsojIo/gcvVeoaof5VwsKel/y2H//wA3AyNwf4/1wCci0t57fBZQHvf6IyKNceuNVgaae/ucgluh5Lsw5zkf+F1VtwVsf8W7tndwr9m/gQreY31xi1rsJKv5+i/gOVx+7nuAi4CBHLms2A9AKeDsHK7fFFaJTiZsN7vl1w1XK90BlPbufwKswUvA7W3rhfvg+6fftqNx6zn28ds2E/chWs1v293ec8t59zt491sGlGMm8G6IMgqu6+UV3IoageWqGOb6fOc7xTtGTeAFb1sXXIDZAwwJeN6juICblJvyAI8Du4EOEfwNZnrPC7yVDPaaAc1wi8/39DtGCVyT/ed+2zYC93m//xNYAMzx/c2AO3Fr74Yr2xfAtIBtTb3y3BnmeUOBrQHbFgP9I3g91gIjEv2/Ybf8uVkN1RRJIlIGV7uZrqoHvc0puKbQdkGe8oXvF3U1lr/JvlYjwDxV3eF3f6n387goy1bNa9L8A1drPoSr8Z4YzXH8/OIdYzNu1Y8HVPVjXO2pAjAtoHb4Da7mXicX5XkOV0u7SFVnRli+b4DT/G+qejjEvqfhgvo03wZVzfDut/fbbzZZNb1zcLXWWQHbZudQrlrA1oBtHb2fk3J4bqBfgPtFpK+IhPs7bvXOa4ogC6imqLoEqAp86vVvVcXVlg4QvNk3NeD+QdwSUjntQ5D9cjIJuA54Gree42m42nS0x/G53jvGCUBVVX3K217d+7mErEB5CDfqFrIWao6mPFfhaoM/RVG+Hao63/8WZt/awB7Nvp4muC8L5b0vSuCCZ3uvz/RsXNPud2QF1PaEb+4Fd30HArYdDexV1V05PDdQP1yz+mBguYisEJFgo8oPkPu/syngbJSvKap8QXNakMeuFZF7VDU9xudM836WDth+FF5NSETKApcC/VR1nG8Hb8Rpbi1Rb5RvgO3ezy64gBRoeS7K0wX4GHhDRG70ao+x9BdQUUTKBwTVY4B9quoLgN/hXtcLgAbe/UPAcd4ApmPIOaBux33p8rcNqCAilaMJqqqaimtmvtMb+DYAmCwiv6rqUr9dq5L1dzFFjNVQTZEjLvlAF1wTb8eA2724D9uOIQ+Qexu8n838ynI80MRvnzJAEn41IxGpBMR0pKxnDrAfODawhujddueiPItwtf8uuLmVsTYP14d5tV95xLvv34S7CNdiMAj4TVW3eEFtsbdtD64ZNpzluGDs7xvv5025Kj2gqr8C9+M+X5v6tntfUuriRmGbIshqqKYougI3CvQFVf3R/wER+R73gZsMfBXLk6rqBhGZhxtFuw/3gToQvxqJqu709hksIrtwA3AexA14qhzj8qSKy+LzgojUwzWTlsD1jXZU1a65KY+q/iQiXXAJJHap6n0xLPMyEUkBxohIZWAlbk5tU+B2v/0yvL/lpbgBVD7f4eaWfhmmn9bne6CriJTw1bRVdbmIjAeeFZGauNesKnC1qoZMDCIis4HpuICuXpn3kr1pvAluUNf3OZTLFFJWQzVFUTKwIjCYAqjqIdx0iG5+/XGx1B1YB7yFGw37KK4mFLjPGuAN3Kjc97zfY87rT70VV6v8EFdrv4HszaFRl0dVZ+EyBvUXkSExLvYtwOvAI16Z6wFdVDVwkJHvGmYF2ZbTgCS8Y5cD/hGwvS9u2syNwKfAKFxNP5w5uJHQ7+LeX9WBS1R1g98+F+Ne54URlM0UQqIaOFXKGGOKBxH5ENigqvmeVUpE5gCfqGpRzNZlsIBqjCnGROQ04GugXsCUqFif5wzgM6CB19driiBr8jXGFFuqOg83IrduPp/qKFyyitR8Po9JIKuhGmOMMTFgNVRjjDEmBiygGmOMMTFgAdUYY4yJAQuoxhhjTAxYQDXGGGNi4P8BA06dRjjSzz4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(7,7))\n", "\n", "# Theoretical CDF\n", "plt.plot(sample_values,normal_cdf,'k-', lw=2, label='Theoretical Normal CDF')\n", "\n", "# Empirical CDF\n", "ranked_df.plot(x='peak value (cfs)',y='cunnane_plotting_position', \n", " linestyle='-', lw=1, \n", " marker='o', markerfacecolor='white', markeredgecolor='b', \n", " color='b', ax=ax, legend=False, label='Empirical CDF')\n", "\n", "# Label the axes and title.\n", "plt.legend(loc='lower right')\n", "ax.set_xlabel('Annual Peak Flow (cfs)', fontsize=15)\n", "ax.set_ylabel('Cumulative Frequency\\nProbability of value $\\leq$ given value (CDF)', fontsize=15)\n", "ax.set_title('(Fig. 3) Skykomish River Peak Flows\\nEmpirical and Theoretical Quantile Plots', fontsize=15);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## Estimating PDFs from observations\n", "\n", "**Options for estimating a PDF from observations:**\n", "* Take the derivative, or difference between each step, on the CDF (CDF is the integral of the PDF)\n", "* Create a histogram, normalize so that the area under the curve = 1\n", "\n", "**Note:** PDFs can look different depending on how you're \"binning\" ([see descriptions here](https://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width)). CDFs are less ambiguous; that's why they're typically recommended. You're using the PDF to communicate with an audience, so make sure it visually shows what you're trying to communicate.\n", "\n", "Take a look at the documentation for [numpy.histogram()](https://numpy.org/doc/stable/reference/generated/numpy.histogram.html) and the density=True option." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# Compute a histogram, specifying density=True to get normalized values (integral=1)\n", "counts, bin_edges = np.histogram(Skykomish_data['peak value (cfs)'], bins=10, density=True)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAFlCAYAAACa3fNqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABU1ElEQVR4nO3dd5QUddbG8e8DiGAOILooYEAxJ8wRs6jLmlZcXcH1FXNWUFQUM8Y1rmkV05pzZtXF7Cq6BlBRzJhAxYAKiNz3j1ujTdPdUzN0d8303M85fWa6qrrqTs1M3/5lmRkhhBBCgFZZBxBCCCE0FZEUQwghhEQkxRBCCCERSTGEEEJIRFIMIYQQEpEUQwghhEQkxRom95qkfjnbRkqyAo8TJPVPvp+nCrEdnlzrjrztx0h6POU55pZ0qqSxkn6W9KWkJyXtk3PMbP9MkjZNzrFSY88xOyR1S66/fQNeY5IObsS1Ts77u/hC0gOSVsk7LtN7khNH7t/zdEnvSbpA0nwVuNaHks5t4Gs2VeH/t+l5P8Mdpc4TqqdN1gGEivozsCDwr7zt/wEG5237BJgGrAf8VMmgJC0CDAEmFth9OTBY0qZmNrKeU90JrA6cBowGFgE2BnoD/yxbwNn7HP+9vF2l630HbJN83w04Bfi3pOXN7Jtk+ytJTO9VKaZS6v6e2wBrAacCSwC7ZBlUnj2A93OexwDxJiqSYm07FLjBzH7J2/6Nmb1Q5DWFElW5nQk8iL9xzcTMfpB0J3AIMLLYCSR1B7YG/mxmt+fsulWSyhtutsxsKlDs91UJ03P+Pl6Q9CHwPJ4o/5XE9H21YpLU3sx+LnFI7t/zM5LmBk6V1NHMqvH3nMbrZjY66yBC/aL6tEZJWgZYH0hdLVOoqlFSF0kPJ9WTHyTH3CFpZCPjWgsvwR5b4rA7ge0lLVTimAWSr1/k77B6pmlKqminSPqjpJckXVvgmOskvVLiHH0lTZO0f/J8LkkXJdWNU5LzbpX3mpHJvds7uZeTJd0gaU5Ja0t6Mdk2UlKXnNfNUn2axP6ypB8lTZL0X0mb5IXZWtIZkiZKmiDpUklzlro3RbyWfP3tQ0x+9WlSbX1bgft0rqSP6z6oSGon6WxJn0iaKq/e7533mg8lnSfpREnjge8bGO/Lydduyfm6SLpF0jeSfpL0qKTl8q55lqQ3kvs/XtJNkhYtdRFJneVV949JmquBMZYkabPkdzpF3ixwWd7/5UeSBuc83y/5fRyas+0oSZ/mPN9H0pjkf/mr5He2YjnjrgWRFGvX5sCP/P6GlkuS2uQ+Cp0geSO7D1ge+BtwJF76XKcxASXnuwQ428w+LXHoc8AcwEYljhmL/3x/l7SVpHYpYzgRGAr0MbP7gKuBXfPecOYBdgZmSZbJ/v7A9cAAM7s82XwVsDdwOrAjXh39oKQN816+LtAPLwkPxD8gXJy8/kJgT2Ap4MoSP8PS+IedJ4Ad8Kq5B4D8DxFHAX9IznkOsB9wWLHzllCXoD8occwt+AeZuXPiFLArcFvOB5U7gP7AGUnsLwH3SVot73x/ATYBDgR2a2C83ZKvXyQfrJ4BlgP2x+/33MBjktrnvGaRJKbtgMPx38ETkloXuoCkbsBTwDhgezOrr8mhdd7/XNH3XkkrAI8AX+F/hyfh9yP3A+7TzPz/sTEwpcC2p5Nzbow3TdwIbIv/Pz8HzF9P3C2PmcWjBh/4m+pLBbaPxNsz8h9t8DcrA+ZJjt0ueb52zus7A78AIxsR09+Aj4D2ObHcUeTYD4HT6znf7sDkJMZp+JvUvoByjvntZ8Lf9H4ANs3ZPx+eXPfOi3MqsHDyfNPkHCvhb6xTgb45xy8PzAD65WxrhbdzPpp3778F5s/Zdlty7o1zth2YbJsred4teb598nwX4Ot67o0BT+Vtuwd4oZ7XnYy/GbdJHksD/wb+B8yZc9xv9yR53hGYnndf1kuO6Zk83zx5vkneNZ8Cbs/73X8OtEvxNzUSr1loA8yJJ4XxeLIV3r74NbBQzmsWxNtNDypyztb433n+7+VD4FxgGeDj5Lpt64mv7j7lP07L+xnuyHl+C/Au0Dpn25+T162XPN8v+RlaJc8/xj9wfpE8V/J7PCh5fjTwckP/Z1viI0qKtWtR/J+ikCfwDgm/PcxseoHj1sL/yV6s22Bewnu5wLElSZofT0rHWOn2oTpf4T9DUWZ2M9AVT2K3AMviHwbyOxYBnI8nm60tpwOPedtYXemlTn/gPjP7Ou8chwJ/x9/4b8nZvhb+JvRb26aZzUie55cUR5nZdznPx+EJ/Zm8beClvELeAOaXV/FulVs6yzMi7/mbwOJFjs21MP7B55ckltWBnczbNgsyb7t7gplLdbsB75nZqOT5Fnh197N5tRSPAz3zTvm4mU1JESvATkmsU/AE+yGwh3k22AJP6t/nXO8H/G/4t2tK2lbSc5K+w5P7+GTXsnnXWi65xjPAbmY2LWWMfZn5f+6yEseuDdxtZr/mbLsziavu7+lp/APdqkmpdXHgbKCDvL19Rfz3+HRy/KvA6vKeuRtLapsy7hYnOtrUrnYU70U6KeeNqpRFKdzxZiIwbwPjGYxXKY6QtECyrQ0wR/L8h7w3gan4z1BSkriuBa6VNAdwBbC3pLPMLLfqeGf8jfDFAqf5JzAyqZYEL230LnDczniSeCxv+2LAZJu1Cu1LYC5Jc+YklG/zjpmG/+wz8rZBkZ/fzMZK6oO3yz4E/CLpbuAwm7ljSaFrpalm/g5PJq2BVfHS0b8kbZAXZ75bgMvkwyEm41Wnw3P2d8D/pvI7fgH8mvf8yxRx1nkCGIQnjY/MbFLeNdelcBXs4/BbO/d9wN3AWcAEvFT2ArPer/Xxauqri3yQLGaMpe9osxh5P7+Z/Srp6+TamNmbkr7C/1YnAaPN7GNJrybb5sR//6OT4x+TtDf+we4wYLKkG/EPqT824OeoeZEUa9c31FPSSuELvFosX0f8U3lDLId/Mp9UYN8k/B85t7S0AP4zpGZmv0i6AG/b68HM7anb4+1u10vaM/fN3cyekvQu3tYn4DNmLWWBt939A7hf0rY5Jd7PgXkkzZWXGDsBP5UqYTWWmT2It1nOj1dz/x1vm+xbhtNPz/nQ9F9JP+NtqLsCt5Z43d34/emDV5P/Ie/4b4BPgT+liKEhQxZKfcj7Bk94pxbY90PydUf8g95uVlf3KHUtcr5r8RLaPZK2yK1FKaPP8TbO3yRtmwsz8//EM/j/zbd46RV+b2tsBzyb93d+HXCdpI546foCvBNTqU5vLU5Un9auscCSs3mOl4BFJa1dt0FSZ2DNRpzrBKBX3uM1/J+5F14lWHeNVnjnjneKnUzSvHkdJep0T77mlzTewDsYbI93OMh3DZ4U9wKuzyu11hmPt4t1B+5ISqbg98nIGReXdDLZhZkTfdmZ2Xdm9i88Ia1QocvcCIzBS2OlYpmEf5jYLXm8ZWav5xzyOP5BbbKZjcp/VCj2x/GqxDEFrjk2OaY98EtdQkzsUeKc++MfsB6WtHIFYv4vsGNeJ5+d8EJM7t9TXQLcmN+T4lPJto34vep0JmY20cyuSPZX6m+m2YqSYu16Fhii2Rur9RCeuG6TdBzwM94T7ku8YwkA8qEAjwObm9mThU5UqOpI0rfAVzbrIP3l8I4xz5aIbTm81+I1eC+6n4DVgOPx9pNZkpGZvSgf1vCIpO/N7Oic3dfhkwC0YeYqv/xzvC9pC/zN50ZJu5vZW5JuBi5Jqg7H4R1+egAHlPgZGkXSfngnlkfwUm13vBR3fbmvBT7ERdIZwE2SNjezUjMO3Yp/wPgO7/iR69/Ao/hEAMPwRDsf/ntrZ2bHlT14b0veE+9JejFeUu2E92x9JmmX/jdwuKS/A/fjVaR7Fjuhmc2QtBfeFj1C0sZm9m4ZYz4N79h0j6R/4O2Fw/BOW8/nHPcUcF7y89QlxWfwzlGQkxQlDcWrXkfi7fWr4/cgSol5oqRYu0biVS3b1HNcUckn5z74TCrX4kMG/oF32MgdOya8/alcg+a3wbv//6/EMe/hwym2BG7AE/j++Bvy5sXae8zsKfxT9yGSTsrZ/gX+Cf3ZnBJEQWb2FrAVPnnAVUmpcF88sZ4I3It3ANrezCpRUnwdr8I+Hy+ZnYAP6ShZkptNt+I9IgfWc9y9eNteB7yN8TfJ39NO+O/ocDxBXoEn+IqUqM3sK7xN8W28unAE3iFlfvw+YmYP4fduZ7yqdRO8RqHUeafjpeE38OEds0xEMRsxj8FrNRYB7sKT5M3MOkPP//C223eTv9+6Dk9v480buaXvl/BS4eX4fT8A72l8YbnirhWaucYg1BJJFwLLmNl2ZTzn/Ph0VZeY2Un1Hd/IazwPPGhmp1Xi/EWuuRBeijjYzGppirgQQgNEUqxhkhbH2xZXN7Oi7XP1nGN/vKr0Xbx0ciQ+Xm9FM/uoXLHmXG8dvFpwSTP7ttznL3C9efFP0IfhPS67FehFGkJoIaJNsYaZ2Xj5ihGLUaLTSj2m4lVLXfDOJC8CW1QiISYWwgfBf1uh8+dbE59Q+iNgr0iIIbRsUVIMIYQQEtHRJoQQQkhEUgwhhBASkRRDzdCsq8bnPoqOO6tAHKlWaFeBpbrKdP3hkkoOhi9wrz6TdGfOVHf5x8yQL1H1kqTTVWBZpRL3Pn/+1/xYc6/xkaRrJXXKOabBK9NLWjaJf4GGvC6E6GgTak3uqvG5xhXYVik74isz1OdBfIxeVp17cu/VUvhUaI9LWjFnPszcY+YH1sDHuA2QtI2Z5U8Ofx6zruE5pp443san5muFzz5zOrCCpPXqmWu1lGXxiSaGM+scsCEUFUkx1JrcVeMzYWalJh2om8eydTLQOsuV4XPv1QuSPsZnQenN7yt+5N/PR5NZVp4CbpW0XN6UeB824v7/mPOa55K5Vm/Aewa/1MBzhTBbovo0tCj6fRX7vkk13ffyldb3TPYPTKoSJ0oappzFYJPquK8kbSDpFfmq6K/mVw/mV5/WVWdK+pOkMfhsI+sUqj6V1F6+Mv1H8pXpP5B0Zs7+vSQ9I19FfpKk/0jKX3apsWZasb6YZLjMQHw6sS3LdO0GxaESK9NL2hSfrg3gg+Qef5jsW0DS1cnveIqkjyVdVYGfITRTUVIMNUe+Zt5MCkz7Ngy4CZ/a62/46gGr8/v6jGvy+xyUudOVzYVPkH0mvprBUfjE0N3rptoqohs+vdgp+NyxH/D7HJV1cQufJm09vCrzZXyx243yznM9Ps1dW3xF9qckrWRm75e4fhrdkq+lfo46/8Gnc1sXn2yhTqu8+29FJldvdBz6fWX6f+O/vyXwJZ+Wwqt6X8EX1T0Xn1buc3y8LfjUeOsDRyTnXwKfUDsEIJJiqD11C+TORNKSZvZhzqYnzGxwsu+/+LySfwR6JG/ij8jXLNyRmZNie+D4ZGUKJP0HX/X8cEpPrrwwPunBqzkx5R+zFV7y6mNm9+Vs/22ibzM7Jef1rfDEsBY+gfUpNFBOAlsKX/j2B2ZdL3IWZjZVvp5fp7xdFzLzfJrPMutCy8XiaIXPLnQ2vvZmscWsh+CTLfyxLuFK+gavzl3PzJ6XVDd/7f/yfu9rA5eaWe6SVjfWF19oOSIphlpTt0Buvs/ynv+20oOZfS9pIvBkXqlmHD6TT767c147WdK/8TfbUj7NTYhFbAZ8k5cQZyJpeeAMvLSTu+Ze/grxaeR/gPgYX1Pw85SvLzQB/DnAbTnPfyhwTL418+IYDexSYnahtYE7rPjK9M8XfJV7FThG0q/AY42d/jDUrhaRFOXLC20PTDCzlcpwvl/5ff2/j83sj7N7zlA2uQvklvJt3vNpRbblr7w+OWdx4ToTgFXquV6aleQXxqv6CpLP0zoiOdeReGlpCr5aSH6cadR9gDC8KvGzvDUFi5LULok3/+f6uBFrI76Fr2P5K/7hYUI9x9e7Mn0JB+Ml6iHApZLGASea2S2lXxZaihaRFPFu2ZdQvvXmfjaz1cp0rtC8zCOpfV5iXIQSySyRJtl8jb/hF7Mevrbelmb2dt1G+coljZH2A0QhvfD3j1KlsrR+amAcaVemn0XSSehQ4FBJq+Adhm6S9LqZvdmgqENNahG9T5M19Gb6Z5G0tKRHJL0s6WlJPTIKLzQ/O9Z9k/R43BKfKH12PQ4sJF8IuZD2yde6TiNIWp96eouWWzIgfhhevVxv+2MFpFmZflrytWgJ2sxeB47B3wfj/z8ALaekWMiVwP5m9q58uaLL8DadNNrJZwyZDpxlZvdUKMbQcG0krVtg+ydm9mkZzv8zcHqSDD/Dezm2pTyLtdatTP8vSafgvSgXAzY2s/2AF/BFZa+SdDZeajwZXweyUnLv57x4+98BeC/cbRrRs7Qc0qxMX9fRZj9Jt+Cl0TckPYO3CY/GS+/7Aj9Sng81oQa0yKSYvKGtD9ye0wNwzmTfThTuxfepmW2dfN/FzD6TtBTwhKQ3zOy9SscdUpmfwlV6J+JvprPrJ7z962JgeXw2lt4N6JxSlJmZpB3x4RiH4+tXfgb8K9n/paRd8aEG9+JrXO6PVwFWSt39NOB7vHR4I3BxPUNQKsbMxkjaFu9wdFcS183k3Acz+0jS0XhV6SHAeLxE/TzQP/n+Vzy5bmtm46v3E4SmrMUsHSWpG/CAma0kaT5grJmVar9Je97hyXkbNDdjaH4knQwcbGYdso4lhFAZLaJNMZ+ZfY/PdLEr+KBpSaumea2kBSXVlSo7ABsA0UAfQgg1oEUkRUk349Umy8mn9NoH2APYR9Jr+ITFfVKebnlgVPK6/+BtipEUQwihBrSY6tMQQgihPi2ipBhCCCGkUfO9Tzt06GDdunXLOowQQghNxMsvv/yVmXUstK/mk2K3bt0YNaqxk3aEEEKoNZI+KrYvqk9DCCGERCTFEEIIIRFJMYQQQkhEUgwhhBASkRRDCCGERCTFEEIIIVHVpChpCUn/kfSWpDGSDitwjCRdJGmcpNclrZGzbxtJY5N9x1Yz9hBCCLWv2iXF6cBRZrY8sC5wkKQV8o7ZFuiePAYA/4DfVta+NNm/ArB7gdeGEEIIjVbVpGhmn5vZK8n3PwBvAZ3zDusDXG/uBWABSYsBawPjzOx9M5sG3EL6SbxDCCGEemU2o02yvuHqwH/zdnUGPsl5Pj7ZVmj7OhUMsVl44QV4442soyhuqaVg882zjiKEENLJJCnKV76/Ezg8Wdtwpt0FXmIlthc6/wC86pUuXbrMRqRN2+jRsMEGMGNG1pEU16oVfPwxdM6vDwghhCao6klR0hx4QrzJzO4qcMh4YImc54sDnwFti2yfhZldCVwJ0LNnz5pdG+voo2G++by0OM88WUczq/HjYd114cYbYdCgrKMJIYT6VTUpShLwT+AtMzu/yGH3AQdLugWvHv3OzD6XNBHoLmlJ4FOgL/CXasTdFD36qD/OPx+WWy7raArr3NlLstddBwMHggqV9UMIoQmpdu/TDYC/AptJejV59Ja0v6T9k2MeAt4HxgFXAQcCmNl04GDgUbyDzm1mNqbK8TcJv/7qpcSll4aDDso6mtL694e33oKXXso6khBCqF9VS4pm9gyF2wZzjzGg4Fu9mT2EJ80W7ZprvD3xjjugbdusoylt113hkEO8tLj22llHE0IIpcWMNs3MDz/ACSfAhhvCTjtlHU395p8fdtwRbr4Zpk7NOpoQQigtkmIzM2wYTJgA553XfNro+veHSZPg/vuzjiSEEEqLpNiMfPKJJ8Pdd29eVZGbb+6dbq67LutIQgihtEiKzcjxx4MZnHlm1pE0TOvW8Ne/wsMPw5dfZh1NCCEUF0mxmXj5ZbjhBjj8cOjaNetoGq5fP+81e9NNWUcSQgjFRVJsBszgqKOgQwc47riso2mcHj28ynf4cP95QgihKYqk2Azcdx88+SQMHeq9OZur/v19ntZXX806khBCKKxRSTFZxilUwS+/+GwwPXrAgAFZRzN7dtvNx1VGh5sQQlNVb1KUtKCkAyTdKekTSVOBaZK+k/SSpL9L2rAKsbZIl18O77wD55wDbTJb06Q8FloI/vhHb1ecNi3raEIIYVZFk6KkbpKuxSfdPhGfieZq4EhgP+BUfNmndYH/SBor6a/J/KahDL791qtMN9sMttsu62jKo39/+Oor74kaQghNTamyxxv4Qr5bmNmzpU4iaWFgF+BYfPWKZjZooGk6/XT45pvmNVC/PltvDZ06eRVqn1giOoTQxJRKisuZWcGlmfKZ2dfAFcAVkhYtS2Qt3AcfwEUXeclqtdWyjqZ82rSBPff0n+2rr7xHbQghNBVFq0/TJsQCr/ui8eGEOsce6wnktNOyjqT8+vXzDkQ335x1JCGEMLNSbYpXSuqWt22pZJHgUEHPPw+33QbHHAN/+EPW0ZTfyivD6qtHL9QQQtNTqvfp/wGL1D1JhmG8C6xc6aBaMjM48khYbDFPirWqf3+fpWf06KwjCSGE3zV0nGKNdPdoum6/HV54watN554762gqZ/fdvXo4SoshhKYkZrRpQqZMgUGDYJVVvN2tlnXs6MNMbrwRpk/POpoQQnD1JcVCs1TGzJUVcvHF8OGHPgSjdQuYM6h/f/jiCxgxIutIQgjB1TdHynBJP+Ztu0HST/kHmlkzWuGv6fnqKx+X2Ls3bLFF1tFUR+/esPDCXoXau3fW0YQQQumkWKi1Z0ylAmnphg6FyZN9OreWom1b2GMPn8pu0iRYcMGsIwohtHRFk6KZ7V3NQFqysWM9Mey7L6ywQtbRVFe/fj6Q/9ZbYf/9s44mhNDSRUebJmDgQGjf3kuLLc3qq8NKK0Uv1BBC05BmlYyNJf1L0vuSfkwe70u6qaGrY0i6RtIESQVHp0k6RtKryWO0pF8lLZTs+1DSG8m+UQ25blM2cqSvl3jccbDIIvUeXnMk73DzwgteYg4hhCyVTIqSTgRGAhsDzwAXAhcl328CPCnphAZcbziwTbGdZnaOma1mZqsBxwFPmtk3OYf0Svb3bMA1m6wZM+Coo6BLFzj88Kyjyc4ee3hv2ygthhCyVrRNMSkFDsWXiBpqZjPy9rcGTgKGSnrCzJ6r72Jm9lT+1HEl7A7U9OyYN94Ir7ziX9u3zzqa7Cy6KGyzDVx/PZx6assYjhJCaJpKlRT3Bx4xs5PyEyKAmf1qZkOAR4EDyhmUpLnwEuWduZcERkh6WVIzX4MefvoJBg+Gtdby2V1aun794NNP4Yknso4khNCSlUqK6+LrKdbnFmC98oTzmx2AZ/OqTjcwszWAbYGDJG1c7MWSBkgaJWnUxIkTyxxaeZx/vieB88+HVtHdiR12gAUWiCrUEEK2Sr0dLwp8kOIcHwCLlSec3/Qlr+q0bikrM5sA3A0UnSzAzK40s55m1rNjx45lDm32ffEFnHUW7LQTbNigrkq1q107LzHfdRd8/33W0YQQWqpSSXEuYGqKc0wD2pUnHJA0P96J596cbXNLmrfue2AroNmurzBkCEybBsOGZR1J09KvH/z8s0+KHkIIWahvmrf1JdW3NnqPtBeTdDOwKdBB0ni8o84cAGZ2eXLYjsAIM8udXq4TcLekupj/ZWaPpL1uUzJ6NPzzn3DoobDMMllH07SsvTYst5xXoe6zT9bRhBBaIpkVnt9b0iyda0owM2uSfQZ79uxpo0Y1nWGN22wDL74I48bBQgtlHU3Tc9ZZPmZz3DhYeumsowkh1CJJLxcb2leq+nTJBjyWKmfAteqRR+DRR+HEEyMhFrPnnj6g//rrs44khNASFS0p1oqmUlKcPh1WW83XTHzzTZ8MOxS29dY+u83770fP3BBC+TW2pIik3pLuT6ZX+7ekA5Q07IWGueYaGDPGO9dEQiytXz/46CN46qmsIwkhtDRFk6KkXYEHgO74klHzApcA0WeygX74watMN9zQh2GE0v70J5h33hizGEKovlIlxYH4WMHlzayvma2Lz0d6qKT6eq2GHMOGwYQJcN553l4WSptrLthtNx+aMXly1tGEEFqSUklxOeBam7nR8SqgLd65JqTwySeeDHff3YcchHT69YMff/TB/CGEUC2lkuI8QP7cInXP561MOLXn+OPBDM48M+tImpcNNvAhGVGFGkKopoYO3m+FT8y9gaRFcw80s4fKHVxz9/LLcMMNMGgQdO2adTTNi+SlxSFDvNNN3L8QQjXE4P0KMYNevXz4xbvvwvzzVz2EZu/DD2HJJX05qRMasmpnCCGUUGpIRqmSYrQbzob77oMnn4TLLouE2FjduvkHi+uu82ro6KQUQqi0oknRzD6qZiC15JdfYOBAWH552HffrKNp3vr1g/794bnnvJ0xhBAqqdQ4xXkac8K61Sxasssvh3fegXPOgTYxeGW27LwzzD13dLgJIVRHqd6nH0s6TVK90zJLmlPSzpKeAg4vW3TN0LffwtChsPnm0Lt31tE0f/PMA7vsArfe6stKhRBCJZVKilsCawDvSvqfpEuTad52lfRHSXtJOknSfcAE4FLgPuCcKsTdZJ1+OnzzTQzUL6d+/Xzh4XvuyTqSEEKtq3dCcEndgb2AzYHVgTlzdn8MPAvcBdxnZr9UKM5Gq2bv0/ff93bEPfbwuU5DecyYAUstBT16+EojIYQwOxrb+xQAM3sXODF5IGlBoB3wtZlNK2egzd2xx3ob4mmnZR1JbWnVCvbay0vhn34KnTtnHVEIoVY1eGEeM5tkZp9HQpzZc8/5XJ3HHAN/+EPW0dSevfbyEuONN2YdSQihlsVqdWVgBkcdBYst5kkxlN8yy/gqI8OH+/0OIYRKiKRYBrfdBi+84NWmc8+ddTS1q18/ePtteOmlrCMJIdSqSIqzacoUb0tcZRV/0w6Vs+uu0L59jFkMIVROJMXZdPHFPkfneedB6yY5+2vtmH9+2HFHuPlmmDo162hCCLWowUlR7g+x0DB89ZX3iOzdG7bYIutoWoZ+/WDSJLj//qwjCSHUotRJUVJvSf8FpuDjE1dJtl8pac+U57hG0gRJo4vs31TSd5JeTR5DcvZtI2mspHGSjk0bdyUNHeorw5/ToqcrqK7NN/chGVGFGkKohFRJUdJe+Gw1bwMD8l73LrBPyusNB7ap55inzWy15HFKcv3W+Iw52wIrALtLWiHlNSti7Fif43TAAFgh00haltat4a9/hYcfhi+/zDqaEEKtSVtSPB44x8z6AfkjxcbgiapeZvYU8E368H6zNjDOzN5PxkfeAvRpxHnKZuBA7/Rx8slZRtEy9esHv/4KN92UdSQhhFqTNil2Bf5dZN8UYL7yhAPAepJek/SwpBWTbZ2BT3KOGZ9sy8TIkb5e4uDBsMgiWUXRcvXoAeusE2MWQwjllzYpfoLPe1pIT2BcecLhFaCrma0KXAzck2wvNLV20bdDSQMkjZI0auLEiWUKzc2Y4QP1u3SBww8v66lDA/TrB2+8Aa++mnUkIYRakjYp/hM4KelQ0z7ZJkmbAwOBq8oRjJl9b2aTk+8fAuaQ1AEvGS6Rc+jiwGclznOlmfU0s54dO3YsR2i/ufFGeOUVOPNMaNeurKcODdC3L7RtGx1uQgjllTYpDgNuAK7j9zbB54BHgVvN7KJyBCNpUckXXJK0dhLf18BLQHdJS0pqC/TFO/5U1U8/eZXpWmv5m3LIzoILQp8+3q44LWbhDSGUSaqxhubrSx0k6Xx8CakOeHJ8wszeSXsxSTcDmwIdJI0HTgLmSK5xObALcICk6cDPQN/k2tMlHYwn4dbANWY2Ju11y+X8832Vhltu8ZUbQrb69fNJ2B9+2BNkCCHMrnrXU2zuyrWe4uefQ/fusPXWcOedZQgszLbp02HxxWH99eGuu7KOJoTQXJRaTzHtOMVDJZ1VZN+ZSSmupg0Z4tV0w4ZlHUmo06YN7LknPPCAzy4UQgizK20l4IEU72H6TrK/Zr3xBlxzDRx0kC9hFJqOfv3gl198PtQQQphdDRmnWCwpfgB0K0s0TdTRR/tk1CeemHUkId/KK8Maa/iYxRBCmF1pk+IkYLki+5YDvi9POE3PI4/AiBGeEBdaKOtoQiH9+vkwmdEFZ9QNIYT00ibF+4GTJa2cu1HSSngP0nvLHVhTYeaTUB90UNaRhGL+8heYY44YsxhCmH2pep9KWgh4Elge+B/wObAYPsvNaKCXmU2qYJyNVq7ep6Fp23FHeP55GD/eO+CEEEIxs9371My+AdYCDgLew2e1eQ84AFinqSbE0HL06+erZowYkXUkIYTmLPVnajObAlyRPEJoUnr3hg4dvMNN795ZRxNCaK4aPC+LpDaS5sp/VCK4ENJq29bbFu+9FyZFvUUIoZHSDt6fT9Ilkj7Dl4r6ocAjhEz17+8TLNx6a9aRhBCaq7TVp1cA2wNXA28CMQVzaHJWW83HLQ4fDvvvn3U0IYTmKG1S3Bo4wsyurmQwIcwOyTvcHH00jB0LyxUbWRtCCEWkbVP8EV/TMIQmbY89oHXrGLMYQmictEnxPOBASbFgUmjSFl0UttkGrr8efv0162hCCM1N2urTzsCqwFhJ/wG+zdtvZjaonIGF0Fj9+sGDD8ITT8CWW2YdTQihOUmbFHcBZiTHF3qbMSCSYmgSdtgBFlzQO9xEUgwhNESqpGhmS1Y6kBDKpV076NvXk+L338N882UdUQihuYg2wlCT+veHn3+G22/POpIQQnOSepo3SQI2AJYF2uXvN7PLyhhXCLNlrbWgRw8vLe6zT9bRhBCai1RJUVIn4HFgBbz9UMmu3CU2IimGJqNuzOJxx8F778HSS2cdUQihOWjIkIzvgCXwhLgO0A04EXgXLz2G0KT89a/QqpUPzwghhDTSJsVN8MT4efJcZvaxmZ0B3EiUEkMT1LkzbLGFD+SfMSPraEIIzUHapLgAMNHMZgDfA4vk7HsOWD/NSSRdI2mCpNFF9u8h6fXk8ZykVXP2fSjpDUmvSopVg0Mq/fvDRx/BU09lHUkIoTlImxQ/ABZLvh8D7JGzbwfgm5TnGQ5sU891NjGzVYBTgSvz9vcys9WKrZgcQr4//cmHZAwfnnUkIYTmIG1SfAjYKvn+NGBnSeMlfQAcClyc5iRm9hQlEqiZPWdmdavhvQAsnjK+EApq3x7+/Ge44w6YPDnraEIITV2qpGhmx5rZ/yXfP4xXl14H3A1sb2bnViC2fYCHc8MARkh6WdKAClwv1Kj+/eHHH+Guu7KOJITQ1NU7JEPSnMDRwANm9hqAmY0CKtauJ6kXnhQ3zNm8gZl9JmkR4N+S3k5KnoVePwAYANClS5dKhRmaifXXh2WW8SrUvfbKOpoQQlNWb0nRzKYCx+OdbSpO0ir4YsZ9zOzrnDg+S75OwEuoaxc7h5ldaWY9zaxnx44dKx1yaOIkT4b/+Y93ugkhhGLStin+F1izkoEASOoC3AX81czeydk+t6R5677H2zcL9mANoZC6EuINN2QbRwihaUs7zdtA4F+SpuGdbr5k5tlsMLOf6juJpJuBTYEOksYDJwFzJK+/HBgCLAxc5rPKMT3padoJuDvZ1gb4l5k9kjL2EOjaFXr18jGLxx/vpccQQsgnM6v/ICl36HPBF5hZ63IFVU49e/a0UaNiWGPwmW369YNnnoENNsg6mhBCViS9XGxoX9qS4t8okgxDaC522gkOPNA73ERSDCEUknY9xeEVjiOEiptnHthlF7jtNrjoIh/DGEIIuWI9xdCi9O/vCw/fc0/WkYQQmqJUSVHSxGTO0qKPSgcaQjlsvLF3uolp30IIhaRtU7yUWdsUFwI2A+YD/lnOoEKolFatvLPNaafBp5/6ShohhFAnbZviyYW2y8dI3AZML2NMIVTUXnvBKafAjTfCoEFZRxNCaEpmq03RfDzH1cDB5QknhMpbemnYcEOvQk0xIimE0IKUo6PNUkDbMpwnhKrp3x/efhtefDHrSEIITUmq6lNJBxbY3BZYHl9b8fZyBhVCpe26Kxx2GFx8MayzTtbRhBCairQdbS4psG0qMB64DBhatohCqIL55oMDDoDzz4ehQ71KNYQQ0q6n2KrAo72ZdTezgWb2Y6UDDaHcjjwS5pgDhg3LOpIQQlMRg/dDi7XYYvC3v3mHm08/zTqaEEJTkHbw/umSriiy73JJp5Y3rBCqY+BAmDEDzj0360hCCE1B2pLi7sDTRfY9DfylPOGEUF3dusEee8AVV8DEiVlHE0LIWtqk+AegWAXTZ8n+EJql446DKVPgwguzjiSEkLW0SfELYI0i+9YA4jN2aLZ69ICdd4ZLLoHvvss6mhBCltImxduAIZK2y90oqTdwInBLuQMLoZoGD/aEeOmlWUcSQshS2qQ4BPgvcH+yYsbrkiYC9wPP44kxhGZr9dVh223hggvgp5+yjiaEkJW04xSnmNlWwLb4ihj/Tb5uY2bbmtnUCsYYQlUMHgxffQVXXZV1JCGErMhqfEbknj172qhRo7IOIzQTm2wC770H778PbWNG3xBqkqSXzaxnoX1pxyn2lXRMkX1HS/rz7AQYQlNx/PE+kP/667OOJISQhbRtiscCU4rs+wk4rjzhhJCtLbeENdeEs86C6bFKaAgtTtqk2B0YXWTfW8n+ekm6RtIESQXPJXeRpHFJZ541cvZtI2lssu/YlHGH0CCSlxbfew9uj7VfQmhx0ibFn4DFi+xbAl8xI43hwDYl9m+LJ9juwADgHwCSWgOXJvtXAHaXtELKa4bQIH36wAorwBln+BRwIYSWI21SfAw4UdIiuRsldQSOB0akOYmZPQV8U+KQPsD15l4AFpC0GLA2MM7M3jezafi4yD4pYw+hQVq18lluRo+G++/POpoQQjWlTYqDgHmA9yTdnlRx3g68B7QHBpYpns7AJznPxyfbim0PoSL69oWllvLSYo130A4h5Eg7TvFjYFV8seEl8GrMJYCLgTXM7JMSL28IFbp8ie2FTyINkDRK0qiJMctzaIQ2bWDQIHjxRXj88ayjCSFUS+r1FM1sopkdZ2brJosLr2tmx5vZV2WMZzyebOssjk84Xmx7sVivNLOeZtazY8eOZQwvtCT9+sEf/gCnn551JCGEamnQIsOS/iBpZ0n7StpJUrlXx7gP2Cvphbou8J2ZfQ68BHSXtKSktkDf5NgQKmbOOeHoo2HkSHjuuayjCSFUQ9rB+60lXQZ8BNwOXAHcAXwk6VJJac9zMz5X6nKSxkvaR9L+kvZPDnkIeB8YB1wFHAhgZtOBg4FH8SEgt5nZmLQ/ZAiNNWAALLywty2GEGpfm5THDQX+BgwGbgW+BDoBuwGnAF/jk4aXZGa717PfgIOK7HsIT5ohVM3cc8Phh8OJJ8Krr8Jqq2UcUAihotJWn+4FnGBm55jZx2Y2Nfl6Dr5CRv+KRRhCxg4+GOadF848M+tImoZ33oGVV4bHHss6khDKL21SXAR4vci+15P9IdSkBRaAgw7yGW7Gjs06mmz9+iv07+9jOA86CH75JeuIQiivtEnxHbxzSyF9gRb+VhFq3RFHQLt2MGxY1pFk64IL4PnnvWfuO+/AFVdkHVEI5ZU2KZ4G9Jf0WNIxZkdJ+0l6DOiX7A+hZi2yCOy7L9xwA3z0UdbRZOOtt+CEE2DHHeHaa6FXLzj5ZPj226wjC6F80g7evw2fs3Ru4ELgTuAiYC58oeGYOjnUvKOP9gnDzzkn60iqb/p0rzadZx74xz/8Ppx3HnzzTfTMDbWlIYP3R5jZevi0bosC7c1sfTP7d8WiC6EJWWIJ2GsvuPpq+OKLrKOprvPO89l9Lr0UOnXybauv7vfjwgvhgw+yjS+EcmnQ4H0AM5thZhPMLNYPCC3OoEHeueSCC7KOpHrGjIEhQ2CXXeDPecuJn346tG7tE6iHUAsanBRDaMm6d/fEcNllXnVY6+qqTeef339m5c1C3LmzVyvfeiu88EImIYZQVpEUQ2igwYNh8mS45JKsI6m8s8+GUaM8IRabRnjgQFh0UTjyyFhRJDR/kRRDaKCVV4Y//tHb0iZPzjqaynnjDe9duttuXnVazDzzwKmn+lCNO+6oWnghVETRpChpSN2E35K6SJqjemGF0LQNHuzVp5dfnnUklfHLL15tuuCC6UrEe+/tHxYGDYKpUyseXggVU6qkeBK/L+T7AbB65cMJoXlYZx3YfHPvlTllStbRlN9ZZ8Err3jS79Ch/uNbt4Zzz/VeqC2hWjnUrlJJcSKwQvK9KLGobwgt0eDBPjTj2muzjqS8XnsNTjkF/vIXH6if1lZbwbbbelXqV+VcZTWEKpIVaRmXdClwAPANsCDwHTC92InMrEnOf9qzZ08bNWpU1mGEGmQG66/vifGdd2COGmhgmDbNS8FffOHzmy68cMNeP2YMrLKKz4t60UWViTGE2SXpZTPrWWhfqaWjDgaeAJbHl4e6Exhf/vBCaJ4kOP542GEHuPlmH8je3J1xhi+Rde+9DU+IACuu6NPh/eMfvrrIssuWPcQQKqpoSXGmg6T/AAeY2duVD6m8oqQYKsnM11icNs1LSa2acX/u//0P1l4bdt8drr++8ef58ktYZhlvc73nnrKFF0LZlCoppp37tFduQoyeqCE4ydsW334b7r4762gab9o0X/miY0cfajI7OnXyGW7uvReefLI88YVQLak/10paX9LDkn4Apkj6QdJDktarYHwhNHm77OIz3Zx+evMdvH7qqT4u8aqrfBjG7DriCJ8r9sgjYUZMCBmakVRJUdKWwEhgceAc4MDk6+LASElbVCrAEJq61q3h2GO9+vGRR7KOpuFGjYIzz/RxidttV55ztm/v7ZOvvAI33VSec4ZQDWnbFF8EPgZ2tbwXSLoTWMLM1q5MiLMn2hRDNUyb5u1oXbvC009nHU16U6fCmmv6moijR8MCC5Tv3DNm/N6TdexYmGuu8p07hNkx222KwMrAVfkJMXFlsj+EFqttW58D9Jln4Kmnso4mvaFDvYPQ1VeXNyGCdzo67zwYP75lrSoSmre0SfFbYOki+5ZJ9ofQou2zDyyyiLctNgcvvgjDhnnc22xTmWtsvDH86U8+Q05LW4MyNE9pk+LtwJmS9pTUDkBSO0l7AqcDt6W9oKRtJI2VNE7SsQX2HyPp1eQxWtKvkhZK9n0o6Y1kX9SJhialfXvvWDJihLfTNWVTpnhv086dvTRXScOG+fVOOqmy1wmhHNImxUHAA8B1wI+SvgN+TJ4/kOyvl6TWwKXAtvgUcrtLWiH3GDM7x8xWM7PVgOOAJ80sd+W6Xsn+gvXBIWTpgAO8GvKMM7KOpLSTTvJhJP/8p6+VWEnLLgsHHuhVtKNHV/ZaIcyutOMUfzazPYAVgf546bA/sKKZ7WlmaadEXhsYZ2bvm9k04BagT4njdwduTnnuEDI333xwyCE+ZvHNN7OOprDnn/fJuwcMgC23rM41hwzxe3PMMdW5XgiN1aD5N8zsbTO7wczOTr42dIabzsAnOc/H8/tKHDORNBewDT693G8hACMkvSxpQAOvHUJVHHYYzD23D3Noan7+2YdeLLGEJ8ZqWXhhOOEEH7IyYkT1rhtCQ1V7UioV2FZsTMgOwLN5VacbmNkaePXrQZI2LngRaYCkUZJGTZw4cfYiDqGBFl4Y9tvP50N9//2so5nZiSf65OX//CfMO291r33wwbDUUnD00fDrr9W9dghpVTspjgeWyHm+OPBZkWP7kld1amafJV8nAHfj1bGzMLMrzaynmfXs2LHjbAcdQkMddZQP6j/77Kwj+d2zz8L553u75+abV//6c87pnW7eeKP2ltsKtaPaSfEloLukJSW1xRPfffkHSZof2AS4N2fb3JLmrfse2AqIZvvQJP3hD/C3v/mb/6efZh0N/PSTV5t27Zptot55Z9hgA69K/eGH7OIIoZiqJkUzm44vSfUo8BZwm5mNkbS/pP1zDt0RGGFmP+Zs6wQ8I+k14EXgQTNrhpNqhZZi4ECvJqz0kIc0jj8exo3zJD3PPNnFIfn9+PLLplWKDqFO2mnetgceMrNmN7VvTPMWsrTXXnDnnfDRR9ChQzYxPPUUbLqpL/x78cXZxJBv9919FY133oHFF886mtDSlGOat3uBTyUNk7R8+UILobYdd5z3+Jzd5Zga68cfYe+9YcklfVaZpuLMM31u1OOPzzqSEGaWNikujc9x+mdgtKTnJe0rab7KhRZC87f88rDjjl5C++676l//uOPggw9g+HAfJtJUdOvmQ1euv95X0gihqUg7eP9DMzvJzJYEtgTGARcAn0u6QVKvSgYZQnM2eLAnxH/8o7rXHTnSk/Ghh8JGG1X32mkMHuxVykcd1XzXoQy1p8EdbczsCTP7K7As8DKwB/CYpA8kHSGpTbmDDKE5W3NNn3D7/PO9F2g1TJ7s1abLLNN0p5ybf344+WRP3vffn3U0IbgGJ0VJm0gaDowFVsLnMt0KnzR8KHB9OQMMoRYMHgwTJ/qg+WoYONA79wwf3rTXMRwwAJZbzqd/++WXrKMJIWVSlNRV0hBJ7wFP4APwBwCLmdkhZva4mQ0E+lF6LtMQWqSNNvLH2Wf7gsSV9PjjXlV7xBE+JrApm2MOOOcc74V6xRVZRxNC+pLi+8C+wL+AZcxsczO72cym5h03Bh9DGELIM3iwL7h7ww2Vu8b33/ukAcsuC6edVrnrlNP220OvXl6V+u23WUcTWrq0SXEHoKuZnWhmHxQ7yMzeMbPodBNCAVtv7e2LZ51Vubk/jznGE+911/n6js1B3YD+b75puu2foeVImxR3AboW2pFUrV5TvpBCqE2SlxbHjYPbby//+UeMgCuv9Am31123/OevpNVX90WPL7zQh5CEkJW0M9r8CqxnZrNUjUpaE3jRzFpXIL7ZFjPahKZkxgxYaSVo0wZefRValWmixe++g5VX9incXnkF2rUrz3mr6dNPvdp3hx3glluyjibUsnLMaCOKL/G0EhDrM4WQQqtWPqD+jTfgwQfLd96jjvKkMnx480yIAJ07eyn31lvhhReyjia0VEVLipIOAw5LnnYFvgDyO9a0wyfqHm5m+1QqyNkRJcXQ1EyfDt27Q6dO8PzzXq06Ox55BLbd1pNtc2+TmzzZ782SS/pSV7N7b0IopLElxTfxVe/vwkuK/0me5z6uBfoDB5Yx3hBqWps2MGgQ/Pe/8MQTs3eub7+F//s/WHFFOOmksoSXqXnm8V6zzz9fmXbXEOqTtk3xJOBqM2sCK8M1TJQUQ1M0ZYqvQr/88j6usLH23tuHeLzwAvQs+Lm3+fn1V1hjDV9v8a23fHHiEMppttsUzWxoc0yIITRV7dp5+9kTTzS+/ezBB70N8bjjaichArRuDeee671Qm8pSV6HlKNWmeBtwnJm9l3xfipnZbmWPrgyipBiaqsmToWtXWH/9hs/9OWmSV5l26ACjRkHbtpWJMUu9e8Nzz/kQlqzWogy1qbElxY7AHMn3iyTPiz0WKVu0IbQQ88wDhx8ODzwAr73WsNcedpjPpTp8eG0mRPDp3374AU45JetIQkuSqk2xOYuSYmjKJk3y0mLv3unH5t13H/Tp4x1rTj65ouFlbv/9fRL1MWN8DGMI5VCOcYohhApYcEE48EC47TafFLs+X38N++0Hq67qs+PUuqFDvf114MCsIwktRdG1DyU1aJiFmV02++GE0PIccYRPbzZsWP1LSx16KHz1lY9NrNVq01ydOnlHouOPhyefhE02yTqiUOtKdbSZ0YDzWEzzFkLjHXIIXH45vPcedOlS+Ji774addvI2thNPrG58Wfr5Z19zsWNHeOml8k2NF1quRlWfmlmrBjyaZEIMobk45hj/eu65hfd/9ZW3r62xBhx7bPXiagrat/eZel55BW66KetoQq2r+mcuSdtIGitpnKRZ/r0lbSrpO0mvJo8haV8bQnPVpQvstRdcdRV8+eWs+w8+2DvlDB/uC/O2NH/5i4/FHDwYfvop62hCLSuaFCWtIGnOnO9LPtJcTFJr4FJgW2AFYPcir33azFZLHqc08LUhNEuDBsG0aXDBBTNvv+MOnyT75JN9JYyWqFUrOP98Xysy//6EUE6lSoqjgVVzvn+jyKNuXxprA+PM7H0zmwbcAvSpwmtDaPKWXRZ23RUuu8xLhQATJsABB3gpqaX3wNxoI9hxR1+k+Ysvso4m1KpSSbEXPil43febFXnU7UujM/BJzvPxybZ860l6TdLDklZs4GtDaLYGD/YB65dcAmY+XOP7773atE3RvuItx7BhPm9sLUx+Hpqmov9mZvZkoe9nU6GFYPK7v74CdDWzyZJ6A/cA3VO+1i8iDQAGAHQp1pUvhCZolVVg++3h73/39QXvvNNLRiuuWO9LW4Tu3eGgg3xO1EMO8QWbQyinBnW0kbScpD0lHZN87dHA640Hlsh5vjjwWe4BZva9mU1Ovn8ImENShzSvzTnHlWbW08x6duzYsYEhhpCt44+Hb76BffaBtdf2BYTD74YMgfnm8wnVQyi3VElR0nySbgXGANcDJyZfR0u6TdJ8Ka/3EtBd0pKS2gJ9gfvyrrWo5EuLSlo7ifHrNK8NoRasuy5stpkvmRTVprNaaCEfp/noo/4IoZzSlhQvA7YC9gLmMrP5gLmAfsCWyf56mdl04GDgUeAt4DYzGyNpf0n7J4ftgifb14CLgL7mCr42ZfwhNCt33AEvv+zrLYZZHXSQr0d59NG+/mII5ZJ2keEfgCPM7OoC+/YFzjezeSsQ32yLGW1CqE133OG9da+8EvbdN+toQnNSjgnBJwOfF9n3GfBjYwILIYTG2nln2GADr0r94Yesowm1Im1SvBQ4WlL73I2S5gKOJmX1aQghlIsE553nMwCdfXbW0YRaUWqVjPw/s+7AJ5L+DUzAFxbeEvgZiPrJEELVrbMO9O3ryXG//WDxxbOOKDR3pVbJ+KAB5zEzW6o8IZVXtCmGUNs+/BB69IDddoPrrss6mtAclGpTLDV4f8nKhRRCCOXRrRscdphXoR52mK8kEkJjxcpkIYRmb/Bg6NDBJzpI0aE+hKJSDwtOBtRvACwLtMvfb2bR2SaEkIn554ehQ3384v33wx//mHVEoblKO06xE/A4vmST8fs8pL+9uKkuNBxtiiG0DNOn+9JaM2bA6NEtc93JkE45ximeB3yHzz0qYB2gGz7d27t46TGEEDLTpg2ccw688w5cemnW0YTmKm1S3ARPjHUD+GVmH5vZGcCNxDjFEEITsN12sNVWcMQRsNdese5iaLi0SXEBYKKZzQC+x8co1nkOWL/McYUQQoNJcNddvtLIrbf6ws0XXAC//JJ1ZKG5SJsUPwAWS74fA+yRs28H4JtyBhVCCI0199xw2mnerrjhhnDkkbD66jByZNaRheYgbVJ8EF8lA+A0YGdJ45MB/ocCF1ciuBBCaKzu3eHBB+Gee+DHH6FXL9h9d/j006wjC01Zqt6ns7xIWgvYER+a8W8ze7jcgZVL9D4NIfz8MwwbBmed5b1Shwzxgf5t22YdWchCqd6njUqKzUkkxRBCnfffh8MP97GMPXrAxRfDFltkHVWotnIMyag70VaSTpB0afJ1y/KEGEIIlbfUUnDfffDAA975ZsstfU3Gjz/OOrLQVKRKipL+IOm/wCPAwcBGyddHJb0oqXMFYwwhhLLabjvviHPaad7uuPzycMYZMHVq1pGFrKUtKV6J9z7d0MwWNbNVzGxRPDkuClxRqQBDCKES2rXzoRtvvQXbbOPfr7wyPPJI1pGFLKVNipsBA83sudyNZvYscCzQq9yBhRBCNXTtCnfeCY8+6uMct90W/vQnX5IqtDxpk+KX+GLChfwMfFWecEIIIRtbbQVvvOE9VB97zKtUTzkFpkzJOrJQTWmT4hnAKZJmWtc6eX4ScHq5AwshhGpr2xYGDYK334Y+feCkk2DFFb23amgZiiZFSbfVPYAtgYWB9yQ9L+leSc8D7yXbo1NzCKFmLL443HILPP64tz3+8Y+w/fYwblzWkYVKK1VS7Jj3eBef53QKMF/y9TlgHNAh7QUlbSNprKRxko4tsH8PSa8nj+ckrZqz70NJb0h6VVIMPgwhVNRmm8Grr8J558FTT3mp8cQT4aefso4sVEpVB+9Lag28g5c8xwMvAbub2Zs5x6wPvGVmkyRtC5xsZusk+z4EeppZ6jbMGLwfQiiHzz+HY46Bm27yzjkXXOAdcqR6XxqamLIN3s85YWOX71wbGGdm75vZNOAWoE/uAWb2nJlNSp6+ACxOCCFkbLHF4MYb4cknYb75YKedfCjHO+9kHVkop9RJUdL6kh6W9AMwRdIPkh6StF4DrtcZ+CTn+fhkWzH7ALnzqhowQtLLkgaUiHWApFGSRk2cOLEB4YUQQmkbbwyvvAIXXggvvAArrQTHHQeTJ2cdWSiHtDPabAmMxEtt5wAHJl8XB0ZKStvRplBFQ8H6W0m98KQ4KGfzBma2BrAtcJCkjQu91syuNLOeZtazY8eOKUMLIYR02rSBQw/1UuIee/gwjuWXh9tugxqfTrrmpS0png7cB6xiZqeY2RXJ11WAB/AhG2mMB5bIeb448Fn+QZJWAa4G+pjZ13Xbzeyz5OsE4G68OjaEEDLRqRNcey08+yx07Ai77eYTjL/5Zv2vDU1T2qS4MnCVFe6Vc2WyP42XgO6SlpTUFuiLJ9vfSOoC3AX81czeydk+t6R5677H13ccnfK6IYRQMeuvDy+9BJde6lWrq64KRx8NP/yQdWShodImxW+BpYvsWybZXy8zm04ykTjwFnCbmY2RtL+k/ZPDhuBjHy/LG3rRCXhG0mvAi8CDZhazFIYQmoTWreHAA71KtX9/OP98WG45+Ne/okq1OUk1JEPSRUA/4CDgDjObIqkdsAtwCXCdmR1W0UgbKYZkhBCy8OKLcNBBMGqUd8655BKfcDxkrxxDMgbhbYfXAT9K+g74MXn+ADN3hgkhhBZv7bW9d+qVV8KYMbD66nDYYfDtt1lHFkpJlRTN7Gcz2wNYEeiPd7zpD6xoZnuaWUyZG0IIeVq3hn339SrVAQPg4ou9SvW662DGjKyjC4XUmxQltZM0VdKfzOxtM7vBzM5Ovr5djSBDCKE5W2ghuOwyr0pdailvc9xoI/jf/7KOLOSrNykmpcAJwPTKhxNCCLVrjTV8+MY118C770LPnt7uOGlS/a8N1ZG2TfEK4NDZmN4thBAC0KoV7L23V6kedBBcfjksuyxcfXVUqTYFaZPiAsBKwIeSrpd0jqSzcx7DKhdiCCHUngUWgIsu8nGNPXp42+N663kVa8hO2qS4MzAVmAZshA/F2DXvEUIIoYFWXdWXpbrhBvj4Y++1OmAAfJV6LaBQTml7ny5Zz2OpSgcaQgi1SoI994SxY+GII7zNcbnlvGr111+zjq5lKZkUJbWXtLOkoyT9RVKnagUWQggtzXzz+YLGr70Gq6wCBxzgJcfnn886spajaFKUtBQwBrgdXxHjRmCspK2qFFsIIbRIK64ITzwBN98MX3zhc6v+7W8wYULWkdW+UiXFs4EZeBviXPjA/f/hPVFDCCFUkAR9+3qV6sCBvsDxssv6BADTY4BcxZRKiusBJ5jZs2Y2xczeAvYDukharDrhhRBCyzbPPDBsGLz+ulelHnoorLkmPPNM1pHVplJJcTHg/bxt7+ELBS9asYhCCCHMokcPePRRuOMOH+y/0Ubw17/C559nHVn1fPRR5a9RX+/TWPAkhBCaCAl23hneeguOPx5uu817qV5wAfzyS9bRld/06V4iHjTI21m7dfNJDyqpvqT4qKQJdQ+g7jPJ47nbk30hhBCqYO654bTTYPRo2HBDOPJIX4Vj5MisI5t9334Lt97qQ1Q6dfIS8fnnw2KLefJfaKHKXr9NiX1DK3vpEEIIs6N7d3jwQbj/fl+Wqlcv75xz7rnQuXPW0aX3zjvwwAP+ePppLyF26ADbb++PrbaC+eevTiypFhluzmKR4RBCS/Dzz94h56yzoE0bGDIEDj8c2rbNOrJZ/fKLV4s+8IAn9Hff9e0rr/x7IlxnHV96qxJKLTIcSTGEEGrI++/7rDj33eftjRdfDFtumXVU8PXX8PDDnggfeQS++84T9mabeRLcbjtvM6yGUkmxVPVpCCGEZmappeDee+Ghh3z4xlZbeeec88+HLl2qF4eZdwi6/35PhM8956uAdOoEu+ziiXCLLXzISVMSJcUQQqhRU6b4tHGnn+7Pjz8ejj4a5pyzMtebOtUnN69LhB984NtXXx122MET4Zpr+vJZWYrq00iKIYQW7KOP4Kij4M47YZllfMmqbbctz7knTPBS6f33w4gRMHkytGvnpcAddoDevWHxxctzrXKJ6tMQQmjBunb1Qf8jRniVau/e0KePD3FYcsmGncvMZ9ep6yTz4ou+rXNn2GMPT4S9esFcc1XmZ6m0qhdiJW0jaaykcZKOLbBfki5K9r8uaY20rw0hhFDcVlt5QjvrLHjsMVhhBRg61HuulvLzz14aPPBAT7CrrQYnnODJcOhQXyj5k098qavttmu+CRGqXH0qqTXwDrAlMB54CdjdzN7MOaY3cAjQG1gHuNDM1knz2kKi+jSEEGY1fry3L956q5cW//53L+VJvv+zz3wM5AMPeAL96SefNGCrrbxtsHdvWLSZTvjZlKpP1wbGmdn7AJJuAfoAuYmtD3C9ebZ+QdICyQTk3VK8NoQQQgqLLw633AL77QcHH+zVqb17w1preSJ8+WU/rmtXX7Zq++1hk028vbCWVTspdgY+yXk+Hi8N1ndM55SvBUDSAGAAQJdq9kEOIYRmplcvePVVH8948sk+lnC99eDMMz0Rrrji76XHlqDaSbHQrc2vvy12TJrX+kazK4ErwatPGxJgCCG0NHPM4fOn7rOPT7G28MJZR5SdaifF8cASOc8XBz5LeUzbFK8NIYTQSNWaX7Qpq3bv05eA7pKWlNQW6Avcl3fMfcBeSS/UdYHvzOzzlK8NIYQQGq2qJUUzmy7pYOBRoDVwjZmNkbR/sv9y4CG85+k44Cdg71KvrWb8IYQQalvMaBNCCKFFKTUkI+MZ6EIIIYSmI5JiCCGEkIikGEIIISQiKYYQQgiJSIohhBBCIpJiCCGEkIikGEIIISRqfpyipInAR1nHUUIH4Kusg2hC4n7MKu7JzOJ+zCzux8zS3I+uZtax0I6aT4pNnaRRxQaRtkRxP2YV92RmcT9mFvdjZrN7P6L6NIQQQkhEUgwhhBASkRSzd2XWATQxcT9mFfdkZnE/Zhb3Y2azdT+iTTGEEEJIREkxhBBCSERSrBJJ20gaK2mcpGML7N9D0uvJ4zlJq2YRZ7XUdz9yjltL0q+SdqlmfNWW5n5I2lTSq5LGSHqy2jFWU4r/l/kl3S/pteR+7J1FnNUi6RpJEySNLrJfki5K7tfrktaodozVlOJ+NP791MziUeEHvijye8BSQFvgNWCFvGPWBxZMvt8W+G/WcWd5P3KOewJfeHqXrOPO+O9jAeBNoEvyfJGs4874fgwGhiXfdwS+AdpmHXsF78nGwBrA6CL7ewMPAwLWreX3j5T3o9Hvp1FSrI61gXFm9r6ZTQNuAfrkHmBmz5nZpOTpC8DiVY6xmuq9H4lDgDuBCdUMLgNp7sdfgLvM7GMAM6vle5LmfhgwryQB8+BJcXp1w6weM3sK/xmL6QNcb+4FYAFJi1Unuuqr737MzvtpJMXq6Ax8kvN8fLKtmH3wT321qt77IakzsCNweRXjykqav49lgQUljZT0sqS9qhZd9aW5H5cAywOfAW8Ah5nZjOqE1yQ19D2mJWnQ+2mbCgYSfqcC2wp2+5XUC/8lbljRiLKV5n78HRhkZr96YaCmpbkfbYA1gc2B9sDzkl4ws3cqHVwG0tyPrYFXgc2ApYF/S3razL6vcGxNVer3mJakMe+nkRSrYzywRM7zxfFPuDORtApwNbCtmX1dpdiykOZ+9ARuSRJiB6C3pOlmdk9VIqyuNPdjPPCVmf0I/CjpKWBVoBaTYpr7sTdwlnmj0ThJHwA9gBerE2KTk+o9piVp7PtpVJ9Wx0tAd0lLSmoL9AXuyz1AUhfgLuCvNfrpP1e998PMljSzbmbWDbgDOLBGEyKkuB/AvcBGktpImgtYB3irynFWS5r78TFeakZSJ2A54P2qRtm03AfslfRCXRf4zsw+zzqorMzO+2mUFKvAzKZLOhh4FO9Zd42ZjZG0f7L/cmAIsDBwWVI6mm41OslvyvvRYqS5H2b2lqRHgNeBGcDVZlawO3pzl/Lv41RguKQ38KrDQWZWsytFSLoZ2BToIGk8cBIwB/x2Px7Ce6COA37CS9I1K8X9aPT7acxoE0IIISSi+jSEEEJIRFIMIYQQEpEUQwghhEQkxRBCCCERSTGEEEKzUN9E4HnH9pc0MZlE/1VJ/5fmGpEUQwghNBfDgW0acPytZrZa8rg6zQsiKYYmLxmQ/IEkk7RM1vGklXxSNUnzlDhm0+SYusckSc9I2jyLeIq8bmRejHWPE/J+hpXKHXPK+OaS9IWkTRrwmlaSLpX0ZRL7ySlec4ykx2cr2DBbCk0ELmlpSY8kcwI/LanH7FwjkmJoDtYDuiXf980wjkraA/859wSmAI9IWi3TiGb2Hzy+3Me1mUb0u0OAD8ysIWtM7gQcCByH/yxpShGXA2tI2rShAYaKuhI4xMzWBI4GLsvZt3OypuIdkpYo/PKZxYw2oTnYHfgRGJ18f1q24VTE63Uz1MgXEP4E2Bc4KNOofvdNsiRRkyKpFX6PTm3gS3sAk8zsmrQvMLMfJN2JJ+GRDbxeqICk1mN94PachQPmTL7eD9xsZlOT2ZCuwyeQLylKiqFJk9Qa2BWf2/EaYIVkot/cY+qqBVeW9G9JP0p6W9JOeceNTD4x/kW+Qvn3kh6WtHjOMQWrAutem/N8PUn3Sfosud6rkvYox89sZpPxib675Vzv/+QrzE+V9JGkgXnxNSqepEpwiqQ/liP2nPPOJV8J/ovk/C9J2ipn/9+SOOfI2faZpK+UvLslVZzfStq3xKU2w5dIuivv+q0lHSfpneSejZc0PNk3Ek+iC+ZUBXeTtICkq5M4pkj6WNJVede7E9he0kKzcXtC+bQCvs1pN1zNzJYHMLOvzWxqctxV+CozqU4YQlO2GdAJX2j2DuAXvLRYyL/w5Lkj8C6+ykb+4qLrAAcDRwED8NW7r2xEXF2BZ4H/A3bA3yyvlVQsttSSDwJLAF8kz48B/gHcA2yffH+qfH7QRscj6URgKNDHzPIn3C5wuNrkPuo5/ip8/s3T8d/HJ8CDkuqW8HkKmAu//0jqDiwCzAeskByzKjA/8HSJ62wOvFNgFYQrkp/tNvyeHQXMnew7EPgn8B2/VwV/DpyPLzF0BL401WBmXX7pOXyOzY3q+flDFSRLhX0gaVf4rf/Bqsn3uYss/5G0E+ibWTzi0WQfeOlwEtA2ef4g8AHJvL3Jtv74m9ffcrYtjK/Evn/OtpH4G+GCOdsOT17bPnm+afJ8pbw4RgJ3FIlReFPEFcATBeKap8TPV3e9VZNzLAJcmGzbHk8Sk4GT8l53Cp40WzcmHuAM4Adg0xS/g5HJ6/IfbQrdM3zx3xlAv5xztMKrvx/N2fYZcHTy/d+Al4Hn635nwKHAhHpiGwHcnretRxLPoSVedzK+FFfuttF421R99+ND4PSs/zda4gO4Gf8A8wu+XNY+wJLAI8BrwJvAkOTYM4Exyfb/AD3SXCPaFEOTJWlOvJRxt5lNSzbfDNwArIu/geYaUfeNmX0taQK+rlyul8xsUs7zN5OvnfEVBtLGtiBJKSt5betk16dpz5Hn1Zzvf8RXfXhA0tZ4Cef2vNLZE8CJ+M/3UQPjOR/4M7C1mT2XMr4ngEG5G8xsepFj18IT8+05x86QdDuQW+37DF7iOhfYGC89Tku2XZ5se6aeuBYF3svb1iv5Orye1+Z7FThG0q/AY1Z8yaGvkuuGKjOzYjUfswzTMLPj8I5UDRLVp6Ep2xZYAHgoae9ZAC+1TKVwFeq3ec+nAe1SHEOB4+ozHNgNOAfYCk8E1zTiPHX6JudYBljAzM5OtndIvo7BPx3XPf6TbK/rUdeQeHbGS2UNWZB3kpmNyn2UOHYxYLKZ/ZS3/UtgruTDDngS3DBpQ9wIryZ9mt+rJjekdNUp+M83NW/bwsCP5lVrDXEwXkU9BBgr6V1JhXo7T6Xxv+fQxEVJMTRldYnv9gL7/izpCDP7tczXnJJ8bZu3fSG8hICkdsB2wMGWs/Zj0hOyscZY4fUR68ZkbY8nlXxjGxHP9sADwPWS9jSzGbMRdyGfA/NImisvMXYCfrLfOz88jd/XLfEqsKfxhN856ZTTifqT4jf4B6dcXwNzS5qvIYnRzL7Fq2wPTTpzDQRukvS6mb2Zc+gC5I2VC7UjSoqhSUq6Wm+PV5f2ynscib9h9ip6gsYbn3xdPieWJfCV3evMiVdPTs05Zl68Mb/cngd+Bv6QX1JLHj80Ip438FL49ng1Zbm9hLfp7ZITj5LnudWhb+Al9+OBt81sYpKYRifbJjNztXIhY/GEmuuJ5OtejYoeMLPXgWPw98jfBoMnHzS64L2DQw2KkmJoqvrgvRMvNLP/5u6Q9Cz+prk78Fg5L2pm4yW9hPfu/Al/UxxMTsnAzL5Ljhki6Xu8U8mxeCee+cocz7fy2VYulNQVr3JsBSwL9DKzHRsTj5m9KGl7fJKA783s6DLG/JZ8ZfRLJM2Ht9XuiyeXA3KOm5H8LrfDOwXVeRofe/jvEu2WdZ4FdpTUqq7Ea2ZjJV0JnCdpEfyeLQDsYmZFJ3+Q9AxwN56ULYn5R2auZl4O76j0bD1xhWYqSoqhqdodeDc/IQKY2S94V/udctqnyukvwMfAjXgvzVPwEkn+MR8A1+O9Re9Mvi+7pH1xAF66uxcvPe/BzFWLDY7HfMqsnYBDJJ1U5rD3xQdLn5jE3BXY3szyO87U/QxPFdhWXycbknO3BzbI234g3vFoT+Ah4O94ibuU5/Eeunfgf18dgG3NbHzOMdvg9/l/KWILzZCSrqshhNAsSboXGG9mFZ/9R9LzwINmVouzKgUiKYYQmjlJawGPA13zhtuU+zrr4OPhlkzaPkMNiurTEEKzZmYv4T1Fu1T4UgvhExJ8W+HrhAxFSTGEEEJIREkxhBBCSERSDCGEEBKRFEMIIYREJMUQQgghEUkxhBBCSPw/9MfZ2aiJnrgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Create a new figure for a timeseries plot\n", "fig, ax = plt.subplots(figsize=(7,5))\n", "\n", "ax.plot(bin_edges[:-1],counts,color='b')\n", "\n", "# Label the axes and title.\n", "ax.set_xlabel('Annual Peak Flow (cfs)', fontsize=15)\n", "ax.set_ylabel('Probability of occurance (PDF)', fontsize=15)\n", "ax.set_title('(Fig. 4) Skykomish River Peak Flows\\nEmpirical PDF Plot', fontsize=15);\n", "# use scientific notation on axes\n", "ax.ticklabel_format(axis='both', style='sci', scilimits=(0,0))\n", "\n", "# Challenge!! See if you can add a theoretical PDF plot to the graph below." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 4 }