{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab 7-2: Mixing and dye-dilution discharge\n", "\n", "\n", "\n", "\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This lab gives an example of how to use a bulk injection of flourescent dye, measure its concentration over time, and determine discharge in a river.\n", "\n", "This uses the third of four attempts at Glen Aulin in June 2005. Use the excel file and the worksheet from the main module to assess the entire situation more qualitatively. \n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Importing python packages you'll need for this lab:\n", "import pandas as pd\n", "import numpy as np\n", "import scipy.stats as stats\n", "from scipy import sparse\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data file" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | sec_after_inj | \n", "min_after_inj | \n", "DateTime | \n", "Rwt_in_stream_ug_per_L | \n", "dt_sec | \n", "
---|---|---|---|---|---|
0 | \n", "0 | \n", "0.0 | \n", "15:39:02 | \n", "0.0 | \n", "NaN | \n", "
1 | \n", "0 | \n", "0.0 | \n", "15:39:12 | \n", "0.0 | \n", "0.0 | \n", "
2 | \n", "0 | \n", "0.0 | \n", "15:39:22 | \n", "0.0 | \n", "0.0 | \n", "